Skip to main content
Fig. 3 | BMC Medicine

Fig. 3

From: Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects

Fig. 3

Newly identified gene families, transcription factor binding motifs, and overlapping changes in gene expression and DNA methylation before versus after differentiation of human primary myoblasts of non-obese subjects. Significant changes in mRNA expression of genes encoding metallothioneins (a), pregnancy-specific beta-1 glycoproteins (b), and chorionic gonadotropin beta polypeptides (c) in human myoblasts versus myotubes of non-obese subjects (n = 13). d To the left is mRNA expression of identified transcription factors with significant enrichment of binding motifs in promoter regions of all differentially expressed genes in human myoblasts versus myotubes of non-obese subjects (n = 13). Those with a red box are further emphasized to the right in the figure. This figure shows Bonferroni adjusted P values and binding motifs for enriched transcription factors in the SP/KLF family and E2F transcription factor family. DNA methylation of the three most significant CpG sites in myoblasts versus myotubes annotated to genes that also showed differential mRNA expression among cell cycle genes (e), metallothioneins (f), and transcription factors with enriched binding motifs among all differentially expressed genes (g) in non-obese subjects (n = 14). (See also Figs. 2d, 3a and d). h Increased promoter methylation and reduced expression of MCM10 during differentiation. i In vitro methylation of the MCM10 promoter resulted in decreased transcriptional activity, measured as luciferase activity (n = 4, **P < 0.01). Data are presented as mean ± SEM. TF, Transcription factor. * q < 0.05

Back to article page