Country data collection
The D4H Initiative aims to strengthen CRVS systems in countries. During the process of D4H country work plan development, the need for better information on community deaths, or a sub-set of deaths not currently captured through medical certification of COD, was identified as the highest priority, with most countries involved in D4H committed to the implementation of VA to obtain this information. A 5-day training curriculum with associated materials was developed and subsequently adapted to country needs [17,18,19]. Since the aim is to use this information to strengthen CRVS systems, the general module of the VA questionnaire, concerned with administrative information (such as date and place of death, usual residence, etcetera), was also adapted by countries to allow such data to be incorporated into the current CRVS system.
SmartVA has been translated and applied in several D4H intervention countries, including Bangladesh, Brazil, China, Colombia, Papua New Guinea (PNG), the Philippines, Myanmar, Peru, Rwanda, Solomon Islands, Sri Lanka and Zambia (Fig. 1). VA implementation ideally follows a number of stages, through a pre-test, pilot, demonstration stage and gradual scale-up [12]. Consequently, different numbers of VAs were collected and processed using this methodology, reflecting the different stages of VA programme implementation across the D4H countries. To illustrate the challenges and achievements of this methodology to rapidly improve knowledge on causes of death in rural populations at low cost, we report on the implementation of SmartVA in four countries: Myanmar, PNG, Bangladesh and the Philippines. These countries were selected to highlight the application of SmartVA in countries at varied stages of health statistical development.
Verbal autopsy questionnaire
For VA interview application in D4H countries, we used the Open Data Kit (ODK) software, the most widely used electronic data collection tool for VA. Data collection using ODK Collect on Android tablets and data storage with ODK Aggregate have greatly improved data quality [20]. The use of a common platform like ODK, with the ability for translation of the VA questionnaire, also enabled the use of automated VA in non-English-speaking countries.
An important aspect of VA questionnaire design is the time taken to conduct a VA interview. For routine application in a country, which might well entail tens of thousands of VAs every year, it is desirable that the interview be as short as possible so as to minimise interviewer and respondent fatigue and distraction, while still reliably capturing essential diagnostic information. The shortened version of the Population Health Metrics Research Consortium (PHMRC) questionnaire was used in SmartVA. This questionnaire was systematically shortened by about 50% from a longer version that was used in research sites using item reduction methods, without a significant decline in diagnostic performance [21]. Empirical evidence from the application of the shortened SmartVA questionnaire suggests that the interview can be completed in 20–22 min, on average, with a further 3–5 min required for the open narrative section [7, 22].
Tariff VA diagnostic algorithm
The Tariff VA diagnostic algorithm was originally developed by the PHMRC based on the premise that certain symptoms are more strongly associated with certain specific causes than others [23]. The resulting ‘tariff’ scores for each symptom-cause pair should, in principle, provide sufficient information to adequately discriminate among various potential causes of death, depending on the pattern of responses to the VA symptom questionnaire, and other information provided at the time of interview. In other words, the diagnostic procedure should be entirely data-driven (by the strength of the observed tariff scores) and not dependent on expert opinion. Subsequent developments of the Tariff algorithm (Tariff 2.0) improved the diagnostic accuracy of the method, by assessing predictive performance against a large ‘Gold Standard’ diagnostic database of over 12,000 cases where the COD was reliably known, by refinements to methods used to incorporate the ‘open narrative’ (free-flowing text in the respondent’s words about events leading up to death), and incorporating a recalibration of thresholds used to determine some specific diagnoses based on experience with field application of the method [9, 24]. Full details on the development and performance characteristics of the Tariff method can be found elsewhere [9, 16, 21, 23].
Comparative performance studies, where alternative diagnostic methods were validated against the PHMRC Gold Standard database, demonstrated that the Tariff method was able to correctly predict COD fractions at the population level, arguably the most relevant information for policy, about 77% of the time, compared with 63–69% for other automated diagnostic methods such as InterVA, and 68% when physicians were used to diagnose VA questionnaires [25].
Verbal autopsy software
We used SmartVA-Analyze version 2.0 to implement the Tariff 2.0 method with the SmartVA questionnaire [26]. This version of SmartVA-Analyze has some important differences from previous versions, such as more user-friendly outputs for analysing and interpreting results. The primary use of SmartVA-Analyze is to generate cause-specific mortality fractions (CSMFs) to identify the leading causes of death (as a fraction) in the community.
There are two main outputs from SmartVA-Analyze: individual cause predictions and population distribution of causes of death (i.e. CSMFs). Individual cause predictions provide a COD for each VA interview completed, along with those for which a cause assignment could not be made with sufficient certainty based on the symptom pattern reported by the family (an ‘undetermined’ COD). The population distribution of causes of death, or the CSMFs, aggregates the individual predictions from the VA interviews and, in addition, redistributes the undetermined causes of death among the causes that can be diagnosed based on the evidence from the GBD and the cause distribution of undetermined cases from a comparison with gold standard diagnoses [9]. This redistribution is done in two ways. Firstly, a VA with an undetermined COD is fractionally distributed among all VA causes, with weights proportional to the likelihood that the particular cause was diagnosed as undetermined in the gold standard database. Certain deaths (such as pneumonia) are more likely to be reported as an undetermined COD because the condition is inherently more difficult to diagnose using VA methods than an event such as a road traffic accident. Secondly, this fractional redistribution weight is averaged with a proportional redistribution weight selected according to the GBD age-sex COD distribution for the country based on the alignment with covariates and other determinants of the epidemiological environment of a population that the GBD measures. This redistribution is done at the population level since the primary purpose of VA is to correctly understand the COD patterns in populations, not individuals.
A more recent use of VA, as an aid for physicians, prompted the development of the second software application: ‘SmartVA Auto-Analyze’. In the Philippines, it is mandatory for municipal health officers to write a death certificate for all non-facility deaths—even those for which they had little or no contact with the deceased. The software offers a standardised, logical, symptom-based platform to elicit useful diagnostic information from the family. The output of Auto-Analyze differs from that of SmartVA-Analyze because it produces only individual results. Physicians conduct the VA interview, and Tariff 2.0 presents them with the top three most likely causes of death along with the basic demographic characteristics of the deceased and a full list of all symptoms endorsed by the family. The physician reviews this information and, using any other information as available from the family, completes the death certificate—choosing either one of the Tariff-assigned causes of death or an alternative cause. Auto-Analyze has been configured in English, Spanish and Chinese and is currently being trialled in selected countries, including China, to standardise and enhance procedures for diagnosing home deaths.
Assessing the plausibility of CSMFs from VA
Routine collection of VA as part of the CRVS system is a new but important challenge for most countries, and as such, the data collected need to be understood and interpreted carefully. To assist countries with this task, we have proposed a series of steps that countries can and should follow to assess the plausibility of their VA CSMFs [27]. This method involves firstly describing the VA implementation area and assessing the extent to which it is similar or dissimilar to a (usually national) comparator. For instance, if geographic features, population age distribution or the epidemiological profile of the VA population differs from the national average, CSMFs will be expected to differ. Other factors to consider include completeness of information on death reporting in the VA population (are all deaths registered, and do they all have a VA) and whether the age-sex distribution of death makes sense given the profile of the VA implementation area. Some assessment of the VA CSMFs against a comparator dataset is useful once the characteristics of both datasets are understood. Under D4H, a tool to accompany these guidelines has been developed to assist and guide countries in how to systematically review their VA data for plausibility [28].
Global Burden of Disease
In many LMICs, there are few sources of data that can be used to compare against population COD information produced through a routine application of VA. In order to assess whether the CSMFs from the application of SmartVA to rural populations produced plausible results, we compared the CSMFs and age distributions of deaths from SmartVA to the findings from the Global Burden of Disease Study 2017, which give estimated COD patterns for each country, by sex and age [3]. The GBD study is a systematic, scientific and comprehensive collaboration to estimate patterns, levels and trends in the causes of death and disability in countries for over 350 diseases and injuries for each year since 1990. The estimates are modelled based on the existing mortality, morbidity and covariate data, corrected for known biases, and thus represent the predicted levels and patterns of mortality given the covariate values for factors likely to affect specific diseases and injury outcomes, such as education, income, smoking prevalence and diet. While the GBD estimates are not strictly comparable to the outputs from SmartVA, since the latter are generally limited to community deaths only, the comparisons are still likely to be meaningful given that community deaths are likely to account for the vast majority of deaths in these countries. In all our VA country samples, the numbers of neonatal and child deaths are too low to conduct such a comparison. Therefore, we present results for adult deaths only, which provide sufficient numbers for comparison.