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Abstract

Background: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases.
Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI).
In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might
have utility in prediction of obesity in patients with MDD.

Methods: Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three
independent large case–control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were
first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was
calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at
each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the
discriminatory ability of predictors of obesity.
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Results: In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were
included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001)
but explained only a modest amount of variance. Adding ‘traditional’ risk factors to GRS significantly improved the
predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI,
0.62–0.68; χ2 = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status
and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the
model (AUC = 0.71; 95% CI, 0.68–0.73; χ2 = 28.64; P <0.0001). We further found that the GRS accounted for more
variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed
patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich
and PsyCoLaus) and found similar results.

Conclusions: A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for
only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with
information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of
developing obesity.
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Background
Obesity is a serious public health problem associated
with an increased risk of various chronic diseases such
as hypertension, diabetes, and cardiovascular disease [1].
It is estimated that over one-third of adults in the US
are obese, whereas another one-third are overweight [2].
Moreover, the prevalence rate of obesity or overweight
in most countries has been rising steadily over the past
decades, resulting in a huge health burden [3]. There is
also evidence that people with major depressive disorder
(MDD) are more likely to be overweight or obese com-
pared to psychiatrically-healthy controls [4], particularly
in individuals with atypical depression, in whom in-
creased appetite and weight gain are more prevalent. In
addition, depressed people have a higher risk for various
medical diseases and most of them are obesity-related. A
recent meta-analysis further suggested the bi-directional
relationship between obesity and MDD [5]. Given the
high prevalence rate of both obesity and MDD, under-
standing the nature of their relationship is a pressing
clinical problem.
Dietary factors and a lack of exercise as well as genetic

factors contribute to the development of obesity. Twin
and family studies have suggested the heritability of body
mass index (BMI) to be between 0.4 and 0.7 [6]. The ad-
vance of genome-wide association studies (GWAS) has
successfully identified multiple polymorphisms associ-
ated with the risk of obesity and higher BMI [7-9].
Among them, the fat mass and obesity associated (FTO)
gene was consistently and reliably replicated in different
studies. Our team has found that several polymorphisms
in the FTO gene, the locus conferring the highest genetic
risk contribution to obesity, are associated with in-
creased BMI in people with MDD. A disease history of
depression further moderates the effect of FTO on BMI
[10]. However, each risk variant only confers a modest
effect on the risk, resulting in a limited ability for obesity
prediction by applying single variants. It has been sug-
gested that combining multiple loci into a genetic risk
score (GRS) might improve prediction of obesity. Al-
though several studies have examined the joint genetic
effect using different numbers of genetic variants to dis-
criminate obesity in the general population [11-13], no
study, to date, has investigated the combined genetic ef-
fects on obesity in people with MDD.
In this study, we aimed to investigate whether a GRS

incorporating a number of well-defined common single
nucleotide polymorphisms (SNPs) might have utility in
prediction of obesity in patients with MDD.

Methods
Subjects and phenotypes
Discovery phase – Radiant study
A total of 3,244 participants (2,434 depressed patients
and 810 healthy controls) were recruited from the Radi-
ant study, which included the Depression Network
(DeNT) study [14], the Depression Case–Control
(DeCC) study [15], and the Genome-Based Therapeutic
Drugs for Depression (GENDEP) study [16]. The DeNT
study is a family study which recruited sibling pairs af-
fected with recurrent unipolar depression from eight
clinical sites across Europe and one in the USA. Only
one proband from each family was recruited in our ana-
lysis. The DeCC study is a case–control study which re-
cruited unrelated patients from three sites in the UK. All
participants in the DeNT and DeCC studies experienced
two or more episodes of major depression of at least
moderate severity. The GENDEP study recruited individ-
uals with at least one episode of depression of at least
moderate severity from nine European centres. People
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who had ever fulfilled criteria of intravenous drug depend-
ence, substance-induced mood disorder, schizophrenia, or
bipolar disorder were excluded. The diagnosis of MDD
was ascertained using the Schedules for Clinical Assess-
ment in Neuropsychiatry (SCAN) [17] interview in all
three studies. The controls were screened for lifetime ab-
sence of any psychiatric disorder using a modified version
of the Past History Schedule [18]. Participants were ex-
cluded if they, or a first-degree relative, ever fulfilled the
criteria for depression, bipolar disorder, or schizophrenia.
Self-reported weight and height were obtained during

the SCAN interview for the individuals with depression
and during telephone interview for controls. BMI was
defined as weight in kilograms divided by height in me-
ters squared. Obesity was defined as BMI ≥30 and nor-
mal weight was defined as BMI between 18.5 and 25.
The reliability of self-report of height and weight was
assessed in the GENDEP dataset (n = 811) where we also
had measured height and weight. The correlations for
measured versus self-reported height, weight, and BMI
were 0.97, 0.95, and 0.95, respectively.
All participants were of white European ancestry. Ap-

proval was obtained from the local research ethics commit-
tees/institutional research boards of all of the participating
sites. The full list of ethics committees can be seen in
Additional file 1.

Replication phase – GSK-Munich study
Overall, 1,679 participants (822 cases and 857 controls)
were recruited at the Max-Planck Institute of Psychiatry
in Munich, Germany, and at two psychiatric hospitals
in the Munich area (BKH Augsburg and Klinikum
Ingolstadt). The same inclusion and exclusion criteria
were applied in this study as the Radiant study. Patients
had to fulfil the diagnosis of recurrent major depressive
disorder of moderate or severe intensity using the SCAN
interview. Controls were selected randomly from a
Munich-based community and were screened for the
presence of anxiety or mood disorders using the Com-
posite International Diagnostic Screener (German ver-
sion) [19]. Only individuals without mood and anxiety
disorders were collected as controls. This study has been
described in more detail elsewhere [20]. Anthropometric
measures for patients and controls were taken at the
Max Planck Institute and associated studies sites by
trained technicians and study nurses [20].
This study was approved by the Ethics Committee of

the Ludwig Maximilian University, Munich, Germany
and written informed consent was obtained from all
participants.

PsyCoLaus study
A total of 2,993 participants (1,296 cases and 1,697 con-
trols) were recruited from a psychiatric sub-study
(PsyCoLaus) of a community survey (CoLaus) carried
out in Lausanne, Switzerland. A DSM-IV diagnosis of
MDD was ascertained using the Diagnostic Interview for
Genetics Studies [21]. The control subjects never ful-
filled criteria for MDD. The PsyCoLaus study has been
described in more detail elsewhere [22]. Weight and
height were measured at the outpatient clinic at the
Centre Hospitalier Universitaire Vaudois [23].
The Ethics committee of the Faculty of Biology and

Medicine of the University of Lausanne approved the
study and informed consent was obtained from all
participants.

Selection of SNPs, genotyping, and quality control
procedure
In the discovery phase, all the participants in Radiant
were genotyped using the Illumina HumanHap610-
Quad BeadChips (Illuminia, Inc., San Diego, CA, USA)
by the Centre National de Génotypage as previously de-
scribed [24]. All DNA samples underwent stringent
quality control including exclusion if the sample geno-
type missing rate was >1%, or if abnormal heterozygosity
or unmatched sex assignment were observed. SNPs with
minor allele frequency <1% or showing departure from
the Hardy-Weinberg equilibrium (P <1 × 10−5) were ex-
cluded. Quality control was described in detail elsewhere
[24]. The risk alleles were defined as alleles associated
with increased risk of BMI. We derived a 32-SNP addi-
tive GRS from the SNPs reported by Speliotes et al. [9]
and Belsky et al. [25]. Of the 32 GRS SNPs, 14 were ex-
tracted from GWAS data after applying quality control,
and 13 were extracted using proxy SNPs with r2 > 0.9.
The remaining 5 SNPs, namely rs11847697, rs11083779,
rs11165643, rs7640855, and rs1475219, were derived
from the 1000 Genomes project imputed data. The qual-
ity measure of imputation for these SNPs was above 0.8.
The call rate for most SNPs was more than 96% except
for one SNP, rs1475219, which was approximately 91%.
The detailed information of the 32 SNPs is shown in
Table 1.
The GSK Munich study was used for replication.

Genotyping was performed using the Illumina Human-
Hap550 SNP Chip arrays. All SNPs with a call frequency
below 95% were excluded. The details were described
elsewhere [26]. The same criteria to construct the GRSs
was applied here; whenever possible, SNPs were ex-
tracted from the GWAS data after applying quality con-
trol, and the rest of the SNPs were extracted using proxy
SNPs.
Participants in the PsyCoLaus study were genotyped

using the Affymetrix 500 K SNP chip [22]. The genotype
was obtained via the BRLMM algorithm. The SNPs were
removed from the analysis based on gender inconsist-
ency, call rate less than 90%, and inconsistent duplicate



Table 1 Single nucleotide polymorphisms included in the genetic risk score in the RADIANT study

Chr Nearest gene SNP name Alleles BMI-increasing
allele

Frequency of
BMI-increasing allele

GWAS effect-size
for BMI

Call rate

1 NEGR1 rs2568958 A/G A 62.5% 0.13 99.95%

TNNI3K rs1514175 A/G A 42.3% 0.07 99.86%

PTBP2 rs11165643 C/T T 58.8% 0.06 99.07%

SEC16B rs10913469 C/T C 19.2% 0.22 100%

2 TMEM18 rs2867125 C/T C 82.9% 0.31 99.98%

ADCY3,RBJ rs10182181 A/G G 46.9% 0.14 99.40%

FANCL rs759250 A/G A 28.4% 0.1 100%

LRP1B rs6714473 C/T T 9.7% 0.09 99.85%

3 CADM2 rs7640855 A/G A 19.0% 0.1 96.83%

ETV5 rs7647305 C/T C 79.0% 0.14 99.93%

4 GNPDA2 rs12641981 C/T T 44.1% 0.18 100%

SLC39A8 rs13107325 C/T T 7.5% 0.19 99.91%

5 FLJ35779 rs253414 C/T T 66.4% 0.1 99.93%

ZNF608 rs6864049 A/G A 47.2% 0.07 100%

6 TFAP2B rs987237 A/G A 18.2% 0.13 100%

NUDT3 rs206936 A/G G 18.0% 0.06 95.99%

9 LRRN6C rs2183825 C/T C 32.9% 0.11 99.98%

11 STK33, RPL27A rs10840065 A/G A 51.6% 0.06 100%

BDNF rs6265 C/T C 79.8% 0.19 100%

MTCH2 rs10838738 A/G G 34.5% 0.06 100%

12 BCDIN3, FAIM2 rs7138803 A/G A 37.5% 0.12 100%

13 MTIF3 rs1475219 C/T C 20.4% 0.09 90.61%

14 PRKD1 rs11847697 C/T T 3.6% 0.17 96.87%

NRXN3 rs10146997 A/G G 21.9% 0.13 100%

15 MAP2K5 rs2241423 A/G G 77.2% 0.13 99.96%

16 GPRC5B rs12446632 A/G G 86.1% 0.17 99.93%

SH2B1 rs4788102 A/G A 39.0% 0.15 100%

FTO rs3751812 G/T T 41.0% 0.39 100%

18 MC4R rs921971 C/T C 26.6% 0.23 99.98%

19 KCTD15 rs29941 A/G G 68.3% 0.06 100%

ZC3H4, TMEM160 rs2303108 C/T C 71.4% 0.09 100%

QPCTL rs11083779 C/T T 95.8% 0.15 98.28%
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genotypes. The GRSs were constructed as in the discov-
ery phase.

Construction of the unweighted and weighted GRS
To evaluate the combined effects of the 32 SNPs on
BMI, an additive model was used to construct both un-
weighted and weighted GRSs. The unweighted GRS
(uGRS) was calculated by summation of the number of
risk alleles across the 32 variants. The weighted GRS
(wGRS) was calculated by multiplying the number of
risk alleles at each locus (0, 1, 2) for the corresponding
effect sizes, in kg/m2 per allele, as reported by Speliotes
et al. [9] and then summing the products. In order to re-
duce the bias caused by missing data, only the partici-
pants without any missing data were included in our
GRS analysis.
Statistical analysis
Linear regression models using traditional risk factors
(age, sex, and principal components of ancestry) and
GRS were calculated to predict BMI. Since BMI did not
follow a normal distribution, a natural log-transformed
BMI was used for the analyses. The analyses were first
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performed in the whole sample and then separately in
the depressive cases and controls.
Binary logistic regression adjusted by age, sex, depres-

sion status and ancestry was used to predict probabilities
of obesity in each model. Receiver-operating characteris-
tics (ROC) curve analysis was conducted to calculate the
area under the curve (AUC) to evaluate the discrimin-
atory ability of each model. We first compared the dif-
ference between AUCs from models incorporating
traditional risk factors (age, sex, and ancestry) with and
without GRS. Then we compared the models comprising
GRS only and the models incorporating other risk fac-
tors. To correct for the possible presence of population
stratification, all analyses were adjusted for the first five
principal components of ancestry, which were calculated
with EIGENSOFT [27].
The analyses were performed first in the whole sam-

ple, and then separately in depressed patients and con-
trols. All data were analyzed using STATA version 12.1
(STATA Corp, Texas). Two-tailed value of P <0.05 were
considered significant.

Results
Discovery phase – Radiant study
Demographic characteristics
After excluding people with any missing genotypes, a
total of 2,521 participants (2,086 non-obese and 435
obese) were included in the analysis. There were no dif-
ferences in sex, age, and depression status between
included and excluded people (all P >0.05). The mean
age ± SD of participants was 43.9 ± 12.8 years (non-obese
43.2 ± 13.1, obese 47.3 ± 10.7, t = −6.08, P <0.0001) and
67.7% were female (72.9% female in obese and 66.6%
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Figure 1 Distribution of weighted genetic risk score in RADIANT study.
female in non-obese, χ2 = 6.50, P = 0.011). Obese people
were more likely to be depressed (90.3% vs. 72.0%, χ2 =
64.87, P <0.001).
The frequencies of uGRS and wGRS were approximately

within normal distribution (Figure 1). The mean uGRS,
the total number of risk alleles of 32 SNPs, was 29.5 ±
3.5 in obese and 28.6 ± 3.5 in non-obese participants
(t = −4.47, P <0.0001), whereas the mean wGRS was
slightly higher in obese compared to non-obese partici-
pants (4.14 ± 0.50 vs. 4.03 ± 0.53, t = −4.18, P <0.0001).
Principal component analysis was used to control for

population stratification. The top five principal compo-
nent scores were used to discriminate the subpopulation
of white Europeans. Principal component 1 (distinguishes
southeast Europe from northwest European ancestry) and
principal component 2 (distinguishes east Europe from
west Europe) were significantly associated with BMI and
were included as covariates.

Linear regression analyses with BMI as the outcome
variable
A base linear regression model including age, sex, de-
pression status, ancestry, and significant interaction be-
tween ancestry and age accounted for 8.29% of the
variance in log-transformed BMI. After adding weighted
GRS to the base model, there was improvement of fit
and an additional 1.27% of phenotypic variance of BMI
explained giving a total of 9.56% (Table 2). Using either
weighted or unweighted GRS made little difference for
the explained variance of BMI (9.56% vs. 9.58%). No
interaction between traditional covariates or between
GRS and traditional covariates were found (data not
shown). Although the interaction between depression
4 5 6
netic Risk Score



Table 2 Linear regression models with BMI as the outcome variable

Study/sample Model F Adj. R2 Additional variance
explained by GRS

Radiant

Total Model 1: adjusted by age, sex, and depression 38.98 0.0829 1.27%

Model 2: model 1 + wGRS 39.16 0.0956

Depressed cases Model 1: adjusted by age and sex 17.85 0.0426 1.63%

Model 2: model 1 + wGRS 20.75 0.0589

Controls Model 1: adjusted by age and sex 11.71 0.0789 0.34%

Model 2: model 1 + wGRS 10.34 0.0823

GSK-Munich

Total Model 1: adjusted by age, sex, and depression 34.02 0.1056 0.53%

Model 2: model 1 + wGRS 29.80 0.1109

Depressed cases Model 1: adjusted by age and sex 8.02 0.0372 1.32%

Model 2: model 1 + wGRS 7.13 0.0504

Controls Model 1: adjusted by age and sex 25.66 0.1306 0.23%

Model 2: model 1 + wGRS 21.98 0.1329

PsyCoLaus

Total Model 1: adjusted by age, sex, and depression 40.20 0.0843 0.93%

Model 2: model 1 + wGRS 39.47 0.0936

Depressed cases Model 1: adjusted by age and sex 14.84 0.0605 1.09%

Model 2: model 1 + wGRS 15.15 0.0714

Controls Model 1: adjusted by age and sex 31.25 0.0970 0.77%

Model 2: model 1 + wGRS 29.21 0.1047
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and GRS on BMI did not meet the conventional 5% level
of significance (ß = 0.27, s.e. = 0.02, P = 0.078), stratifying
by depression status with GRS incorporated in the
model explained an extra 1.63% of variance of BMI in
depressed patients but only explained an extra 0.34% of
variance of BMI in healthy controls.

Prediction of obesity
Logistic regression models were used to examine the re-
lationship between GRS and obesity in addition to age,
sex, ancestry, and depression status. The discriminative
power of the regression model was measured by the
AUC. The AUC was significantly higher in the model
combining all non-genetic risk factors (age, sex, ancestry,
and depression status) and genetic factors compared to
the model only applying non-genetic risk factors (AUC
increased from 0.69 to 0.71, χ2 = 9.83, P = 0.0017). We
further investigated whether GRS alone is able to dis-
criminate obesity or not. The AUC was only 0.58 (95%
CI, 0.55–0.61) while only including genetic risk score
and ancestry into the base regression model. However,
the AUC increased to 0.65 (95% CI, 0.62–0.68) after
adding traditional risk factors such as age and sex (χ2 =
21.46, P <0.0001). The AUC further increased to 0.71
(95% CI, 0.68–0.73) on incorporating depression status
into the above model (χ2 = 32.33, P <0.0001; Figure 2).
Again, the unweighted GRS produced similar results as
the wGRS when incorporated into our regression model
(AUC increased from 0.58 to 0.65 to 0.70).
We used the same analysis stratifying by depression

status and found that, in depressed patients, the AUC
increased from 0.58 (95% CI, 0.55–0.61) to 0.61 (95% CI,
0.58–0.64; χ2 = 5.65, P = 0.0175) while in healthy controls
it remained at 0.67 (95% CI, 0.60–0.73; χ2 = 0.00, P =
0.98). No interaction was found between depression,
GRS, and obesity (OR = 1.08, s.e. = 0.36, P = 0.81).
Replication phase – GSK Munich study
Demographic characteristics
A total of 1,679 participants (244 obese and 1,435 non-
obese) were included in this study. The mean age ± SD
was 51.49 ± 13.50 years (53.29 ± 11.51 for obese and
51.19 ± 13.80 for non-obese, P = 0.01). There was no sex
difference between obese and non-obese patients
(64.75% obese and 67.24% non-obese patients were fe-
male, P = 0.44). Obese people were more likely to be de-
pressed (64.75% vs. 46.27%, P <0.001).
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Linear regression analyses with BMI as the outcome
variable
Linear regression models to predict BMI suggested
the wGRS accounts for 0.63% of the variance in log-
transformed BMI. While stratifying by depression status,
we found wGRS explained an extra 1.32% of phenotypic
variance of BMI in depressed patients but only accounted
for 0.23% of variance in healthy controls (Table 2).
No significant interaction was found between depres-

sion and GRS on BMI (ß = 0.25, s.e. = 0.01, P = 0.18).
Prediction of obesity
Logistic regression models were used to examine the rela-
tionship between GRS and obesity in addition to age, sex,
ancestry, and depression status. The AUC was approxi-
mately 0.59 (95% CI, 0.55–0.63) while only including gen-
etic risk score and ancestry into the base regression
model. The AUC increased to 0.64 (95% CI, 0.60–0.68)
while adding traditional risk factors such as age and sex
(χ2 = 8.21, P = 0.004). The AUC further increased to 0.69
(95% CI, 0.66–0.73) while incorporating depression status
into the above model (χ2 = 10.67, P = 0.001). Stratified ana-
lyses by depression status showed that using wGRS to dis-
criminate obesity was statistically significant in depressed
patients (AUC increased from 0.53 (95% CI, 0.48–0.58) to
0.58 (95% CI, 0.53–0.63), χ2 = 4.19, P = 0.041) but not in
healthy controls (AUC remained at 0.66 (95% CI, 0.60–
0.72), χ2 = 0.34, P = 0.56).
No significant interaction was found between depres-

sion and GRS on obesity (OR = 1.38, s.e. = 0.39, P = 0.26).
PsyCoLaus study
Demographic characteristics
Overall, 2,993 subjects (409 obese and 2,584 non-obese)
were included in PsyCoLaus study. The mean age ± SD
was 50.19 ± 8.84 years (52.94 ± 8.80 for obese and 49.76 ±
8.77 for non-obese, P <0.0001). There were no sex differ-
ences between obese and non-obese patients (49.87% of
obese and 53.44% of non-obese people were female,
P = 0.18). Obese people and non-obese people had equal
depression rates (40.83% vs. 43.69%, P = 0.28).

Linear regression analyses with BMI as the outcome
variable
Linear regression analysis to predict BMI suggested the
wGRS accounts for 0.90% of the variance in log-
transformed BMI. While stratifying by depression status,
we found that wGRS explained an extra 1.09% of pheno-
typic variance of BMI in depressed patients but only
accounted for 0.77% of variance of BMI in healthy con-
trols (Table 2).
No significant interaction was found between depres-

sion and GRS on BMI (ß = 0.09, s.e. = 0.01, P = 0.52).

Prediction of obesity
Again, logistic regression models were used to examine
the relationship between GRS and obesity in addition to
age, sex, ancestry, and depression status. The AUC was
approximately 0.56 (95% CI, 0.53–0.58) while only in-
cluding GRS and ancestry into the base regression
model. The AUC increased to 0.62 (95% CI, 0.59–0.65)
while adding traditional risk factors such as age and sex
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(χ2 = 14.61, P = 0.0001). The AUC remained at 0.62 (95%
CI, 0.59–0.65) while incorporating depression status into
the above model (χ2 = 0.11, P = 0.74). Stratified analyses
by depression status showed that using wGRS to dis-
criminate obesity was not statistically significant neither
in depressed patients (AUC increased from 0.61 (95%
CI, 0.56–0.66) to 0.63 (95% CI, 0.58–0.67), χ2 = 3.66, P =
0.0558) nor in healthy controls (AUC increased from
0.61 (95% CI, 0.57–0.65) to 0.62 (95% CI, 0.59–0.66),
χ2 = 2.66, P = 0.1).
No significant interaction was found between depres-

sion and GRS on obesity (OR = 0.98, s.e. = 0.21, P = 0.94).

Discussion
In this study, we developed both weighted and un-
weighted GRS, including 32 well-established risk loci
from a recent meta-analysis of GWAS on BMI [9]. We
aimed to investigate whether these GRSs are associated
with BMI and predict obesity.

Prediction of BMI
Both uGRS and wGRS were associated with BMI
(P <0.0001) and accounted for 1.27%, 0.63%, and 0.90%
of phenotypic variance of BMI in Radiant, GSK Munich,
and PsyCoLaus studies, respectively, and there was little
difference in explained variance of BMI in each study. For
each unit increase in uGRS, which is equal to one
additional risk allele, BMI increased by approximately
0.175 kg/m2. Our overall result was thus in keeping with a
previous study [9] using the same method to construct a
GRS for BMI, but which did not take into account the re-
lationship between BMI and depression.
Our results suggest that GRS explained more phenotypic

variance of BMI in depressed patients than in healthy con-
trols, although the interaction analyses were suggestive
(Radiant) but not significant (GSK Munich and PsyCo-
Laus), this could reflect the fact that conventional levels of
significance for interaction are often difficult to detect
when the outcome variable has been log transformed.
Interestingly, the case/control difference in the effect of
GRS was more prominent when depression was diagnosed
in clinical settings (RADIANT and GSK Munich studies)
than in a community study (PsyCoLaus study).

Prediction of obesity
We further explored the utility of a GRS approach using
ROC analysis to compare the discriminatory ability of
predictors of obesity. Conventionally, it is accepted that
the AUC in a ROC analysis should be >0.8 to be of clin-
ical value for screening. During the discovery phase,
AUC fell short of this threshold but combining genetic
factors and non-genetic factors proved better than using
GRS alone in the prediction of obesity (with the AUC in-
creasing from 0.69 to 0.71). In the replication phase,
findings were similar except that depression had a small
and non-significant association with obesity in the Psy-
CoLaus study, which could reflect the fact that PsyCo-
Laus was a community-based study with less severe
cases of MDD than the clinically ascertained RADIANT
and Munich GSK studies. Our results suggest that GRS
might improve obesity prediction in depressed patients
compared to controls.
In other respects, the results were similar to previous

studies, which used only genome wide significant genetic
variants to construct a GRS [11], in finding that the
optimum AUC was obtained by combining GRS and
non-genetic risk factors. A significant novel feature of
the present study was that combining these factors with
depression status further improves the prediction of
obesity. This is in keeping with the association between
obesity and MDD that has been found in either the
general population or clinical settings [4,5,28]. Although
the relationship between these two diseases may be bi-
directional [5], our own recent analyses using a Mendelian
Randomization approach [29] do not support a direction
of cause from high BMI to depression. In addition, the fact
that GRS has a larger effect on BMI and obesity in
depressed patients, especially clinically severe depression,
might reflect the importance of genetic effects on the
association between obesity and clinically significant
depression.
Limitations
There are certainly some limitations that should be
mentioned. First, we only selected the risk loci that
reached genome-wide levels of significance. It is highly
probable that there are additional as yet to be identified
loci that will emerge when even larger sample sizes are
included in GWAS. Second, since the established com-
mon variants from GWAS explain only a small propor-
tion of the variation in BMI, future studies should
include rare variants with larger effects and copy num-
ber variants to construct future GRS. In addition, gene-
gene interactions and gene-environment interactions
should be taken into account as well to maximize the
obesity prediction ability of GRS. For example, our
group [10] has found that depression status moderates
the effect of FTO gene on BMI (although we did not find
evidence of interaction between depression and GRS in
the current study). Third, the 32 BMI loci used to
construct the GRS were identified in GWAS of white
European origin. The allele frequencies and their effect
size may be different from non-European populations
and the results should probably not be generalized to
other ethnicities. Furthermore, the present study is a
cross sectional study and cannot therefore take into ac-
count BMI fluctuations across the life span.
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A further minor drawback is that PsyCoLaus is a sub-
set of the CoLaus study, which was one of the 46 studies
from which the GRS was derived [9], and therefore can-
not, on its own, provide independent estimation of the
risk score effect.

Conclusions
In summary, we found that either a wGRS or a uGRS
based on 32 well-established risk loci were significantly
associated with BMI. Although GRS on its own ex-
plained only a small amount of variance of BMI, a sig-
nificant novel feature of this study is that including non-
genetic risk factors together with GRS and depression
came close to the conventional threshold for clinical
utility used in ROC analysis and improves the prediction
of obesity.
Our results suggest that the GRS might predict obesity

better in depressed patients than in healthy controls. This
has potential clinical implications as well as implications
for future research directions in exploring the links be-
tween depression and obesity-associated disorders.
While it is likely that future genome-wide studies with

very large samples will detect variants other than the
common ones, it seems probable that a combination of
non-genetic information will still be needed to optimize
the prediction of obesity.

Additional file

Additional file 1: List of institutions where the ethical committees
gave approval for the Radiant study.
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