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Abstract

Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the
renin–angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related
to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin–angiotensin system
have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression
and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of
depression. While no randomised clinical trials were found, case reports and observational studies showed that
angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression,
whereas other antihypertensive agents did not. Drugs targeting the renin–angiotensin system act on inflammatory
pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant
properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment.

Keywords: Depression, Psychiatry, Inflammation, Renin–angiotensin system, Angiotensin, ATR1, ATR2, Mas, Angiotensin
receptor blockers, Angiotensin-converting enzyme inhibitors

Background
The pathophysiology of depression remains elusive and
current treatments, which focus on traditional pathways
(monoamine alterations), are only partially effective. Re-
mission rates in the treatment of depression are only
about 30% for those treated with traditional pharmaco-
therapy, and multiple agents are often required to
achieve an adequate level of recovery [1] Evidence points
to the involvement of neuroinflammation, oxidative and
nitrosative stress pathways, mitochondrial dysfunction
and neurotrophic signalling in depression [2].
Recently, the renin–angiotensin system (RAS) was pro-

posed to be implicated in depression, and that blocking
this system, either with angiotensin-converting enzyme
inhibitors (ACEIs) or with angiotensin II type 1 receptor
(AT1R) blockers, would translate into clinical benefits for
the depression treatment [3–7]. Here, we review the litera-
ture so far on RAS-targeting drugs in depression.

Methods
A PubMed search was conducted for literature published
between January 1974 and June 2017. Search terms
included were: depression OR inflammation OR anxiety
OR mood AND renin–angiotensin system, angiotensin,
ATR1, ATR2, angiotensin receptor blockers, angiotensin-
converting enzyme inhibitors, ATR3, ATR4, Mas, and al-
dosterone. Systematic reviews, randomised controlled trials
(RCTs), observational studies, case series and animal stud-
ies with an emphasis on the angiotensin system and its role
in depression were included. Articles not in English were
excluded. The PubMed search was augmented by manually
searching the references of key papers and related litera-
ture. The results were presented as a narrative review.

The RAS in the brain
The RAS was discovered in the 19th Century, after the
blood pressure-raising agent renin was first identified in
the rabbit kidney [8]. In time, the RAS became an estab-
lished and extensively studied peripheral regulator of
blood pressure and renal-mediated body fluid homeosta-
sis, and was discovered to be a central target in clinical
hypertension therapy. Renin, a protein synthesised by the
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juxtaglomerular cells of the kidney, cleaves the polypep-
tide angiotensinogen to generate angiotensin I (Ang I).
This peptide is metabolised to angiotensin II (Ang II) by
angiotensin I-converting enzyme (ACE).
It was surprising when renin was identified in the dog

brain in 1971 [9, 10]. Subsequently, intracranial Ang II
was shown to elevate blood pressure and to promote
fluid intake [11–14], suggesting that angiotensin recep-
tors were present in the brain. The actions of Ang II in
the central nervous system are mediated mainly by two
receptor types: AT1R and AT2R [15, 16]. Other recep-
tors, including MAS [17], the (pro)renin receptor (PRR)
[18] and AT4R [19], have also recently been identified
but their roles remain less well characterised. AT3R was
first reported as a new binding site for Ang II in mouse
neuroblastoma cell cultures [20], but a separate gene for
this receptor remains to be sequenced in humans.
AT1R mediates most of the peripheral and central

actions of Ang II [21] and is implicated in multiple path-
ways related to regulation of the stress response. Stimu-
lating AT1R contributes to the release of inflammatory
markers [22]. Ang II interacts with AT1Rs, activating the
NADPH–oxidase complex [23–25], the microglial
RhoA/Rho kinase pathway [26–28], NF-kappa B, indu-
cible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2). In turn, activated COX-2 forms an interme-
diate in several key aspects of central nervous system
inflammation, and in oxidative and nitrosative stress (see
Fig. 1). AT1R stimulation also releases tumour necrosis
factor α (TNF-α) [29, 30], which is important in several
neurodegenerative disorders [29, 31–33], and regulates

activation of the hypothalamic–pituitary–adrenal axis.
Stimulation of AT1R in the parvocellular hypothalamic
paraventricular nucleus (PVN) by Ang II increases produc-
tion of corticotrophin-releasing factor [34–36]. In turn,
this spurs adrenocorticotropic hormone secretion in the
anterior pituitary gland, starting the stress response cas-
cade. Accordingly, in humans, AT1R blockade downregu-
lates hypothalamic–pituitary–adrenal axis activation [37].
Ang II also stimulates the release of aldosterone via

AT1R in the adrenal cortex of the kidney [38]. Thus, the
acronym ‘RAAS’ (as in renin–angiotensin–aldosterone
system) is often used. Besides being regulated by Ang II,
aldosterone release is also stimulated by adrenocortico-
tropic hormone and the sympathetic nervous system.
The role of aldosterone in the brain has previously been
downplayed because its specific intracellular receptor,
the mineralocorticoid receptor (MR), shares affinity with
cortisol, which circulates at a ~1000-fold higher concen-
tration than aldosterone [39]. For a tissue to be sensitive
to aldosterone, it must express 11β-hydroxysteroid de-
hydrogenase type 2 (HSD-2) protein, which degrades
cortisol, freeing the MR to the action of aldosterone.
HSD-2 has been identified in the brain, mainly in the
nucleus of the solitary tract, but also in the PVN [40];
regions that also express AT1R. Surprisingly – parallel-
ing the history of angiotensin – aldosterone synthesis
was also recognised in the amygdala, hippocampus and
hypothalamus of the brain [41].
AT1R is particularly dense in the anterior pituitary;

the circumventricular organs (area postrema; subfornical
organ, the vascular organ of lamina terminalis and the

Fig. 1 Pathways involved in neuronal damage of angiotensin II through AT1 receptor agonism. Ang II, angiotensin II; AT1R, angiotensin II receptor
type 1; PGE2, prostaglandin E2; Cox-2, Cyclooxygenase-2; PPAR-γ, peroxisome proliferator-activated receptor gamma; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; NO, nitric oxide; ROS, reactive oxygen species
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median eminence); the lateral geniculate body; inferior
olivary nucleus; the nucleus of the solitary tract and in
the PVN, the preoptic and the supraoptic nuclei of the
hypothalamus [42].
Modern molecular approaches have revealed that

AT2R is also expressed in the adult brain [43, 44]. AT2R
is involved in neurodevelopment [45–49] and partici-
pates in cell growth inhibition, fetal tissue development,
extracellular matrix modulation, neuronal regeneration,
apoptosis, cellular differentiation, and, possibly, vasodila-
tion and left ventricular hypertrophy [50]. AT2R stimu-
lation exerts neuroprotective effects in ischaemic stroke
in rodents [51–55], and while the underlying mechanism
remains to be fully characterised, it seems to partly
involve an increase in the anti-inflammatory cytokine
interleukin-10 [56]. AT2R is particularly dense in the
amygdala, caudate putamen, medial geniculate body,
globus pallidus, habenula, hypoglossal nucleus, inferior
colliculus, inferior olivary nucleus, locus coeruleus, tha-
lamus, and ventral tegmental area [42].
More components of the RAS such as ACE2, angioten-

sin-(1–7) and the Mas receptor have recently been identi-
fied in the brain. This alternative pathway is sometimes
referred to as the non-classical RAS [57]. Originally iden-
tified in 1986 as an oncogene in mice [58], the tumori-
genic power of Mas was later discredited and remained an
orphan receptor until it was subsequently shown to bind
with Ang (1–7) [17]. ACE2 can hydrolyse Ang II to pro-
duce Ang-(1–7). It can also cleave Ang I, producing Ang-
(1–9) with subsequent Ang-(1-7) formation, although with
much less efficiency. Mas is thus proposed to be a recep-
tor for Ang-(1-7), with its highest expression in the brain
[59]. The action of Ang-(1–7) through Mas is thought to
influence arachidonic acid production and nitric oxide
synthase activation [60] (see Fig. 2).

The recently discovered PRR is highly expressed in the
brain [18]. Its large extracellular domain binds and cap-
tures renin and its almost inactive precursor prorenin, in-
creasing their enzymatic activities [61], but it also mimics
the actions of AT1R through intracellular signalling [62].
A specific receptor for angiotensin IV (Ang IV), an-

other less active peptide than Ang II, was first identified
in a guinea pig hippocampus [19]. It is thought that the
identity of AT4R was established when it was discovered
that Ang IV is a strong inhibitor of insulin-regulated
aminopeptidase (IRAP) [63]. IRAP is responsible for
oxytocin degradation and, as demonstrated when an in-
jection of Ang IV abolished the antidepressant effects of
oxytocin in mice [64], is apparently required for its
mood effects to take place. Yet recently, discrepancies
between Ang IV binding site-antagonist and IRAP inhib-
itors [60], or the unaltered cognitive response of Ang IV
in IRAP knockout mice [65], have cast doubt on
whether IRAP is the only AT4R receptor. Further candi-
dates for the role of AT4R have been proposed [42].
Ang II is also involved in cerebral blood flow regulation

[21, 22]. Rising circulating Ang II is free to cross into the
subfornical organ. This is a circumventricular organ lack-
ing the blood–brain barrier, which, via AT1R, signals the
paraventricular nucleus of the hypothalamus to activate
the rostral ventrolateral medullary neurons and peripheral
sympathetic nerves, thereby raising blood pressure [66].
Overstimulation of AT1Rs can lead to endothelial dys-
function [67] and neuronal injury and vulnerability caused
by cerebrovascular remodelling [68–72].
It is well established that angiotensin receptors are

present in the brain, yet the origin of active angiotensin
peptides in the brain remains somewhat controversial. Re-
searchers are puzzled because while Ang II is too hydro-
philic to cross the blood–brain barrier [73], expression of

Fig. 2 Pathway from angiotensinogen to AT1, AT2 and Mas receptors. ACE, Angiotensin-converting enzyme
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renin in the brain is too low to account for its local
synthesis [74]. Among the hypotheses advanced to solve
this apparent paradox are renin-independent synthesis
of angiotensin peptides [75]; impaired blood–brain bar-
rier in hypertension leading to Ang II leaking into the
cerebrospinal fluid [73]; an intracellular form of renin
in the brain [76] or undetectable renin caused by its se-
questration by PRR [62]. Although uncertainties persist,
targeting the brain RAS or the peripheral RAS cannot
be equal because ACEIs that penetrate the blood–brain
barrier are superior to non-centrally acting ones in pre-
venting cognitive decline [77, 78].

Major depressive disorder (MDD) and
neuroinflammation: pre-clinical data
Inflammation is essential for restoring homeostasis in
stress, infection and injury [79]. Hormones and circulating
pro-inflammatory cytokines, products of neuronal injury
and bacterial endotoxins, activate transcription factors.
Activated inflammatory cascades with brain parenchymal
microglia and blood-derived infiltrating macrophages also
participate [80]. A well-regulated central inflammatory
chain is fundamental to restore homeostasis, but an exag-
gerated response can be responsible for chronic inflamma-
tion, neuronal damage and a decrease in brain-derived
neurotrophic factor [81–86]. Thus, excess or sustained
activation of immune responses augments the risk of
disease in vulnerable individuals, and can be important in
the pathophysiology of many neurological and psychiatric
disorders [2, 81, 87–96].
The inflammatory hypothesis [97, 98] postulates that

depression is the result of altered immune-inflammatory
pathways. This leads to increased immune activation,
inflammation, nitro-oxidative stress and alteration of the
kynurenine pathway, which ultimately causes changes in
monoamine levels. MDD is characterised by a low-grade
inflammatory state with increased peripheral levels of
inflammatory cytokines, and microglial activation
[98–103]. Normalised levels of inflammatory markers
are associated with remission of clinical depression
[104], while persistently elevated levels are associated
with a lack of response to antidepressants [105]. Elevated
levels of inflammatory markers such as C-reactive protein
(CRP) may increase the risk of a first episode of depres-
sion [106, 107]. However, a large Mendelian randomisa-
tion study found no causal association between increased
CRP levels and depression in people with genetically ele-
vated CRP [108], and also that inflammation may better
stratify those who will or will not benefit from anti-
inflammatory treatments [109]. More compelling is the
strong observation of depressive symptoms induced by
interferon-α treatment, both in humans and in animal
models [110–113].

Consequently, it has been hypothesised that drugs with
anti-inflammatory properties might also demonstrate
antidepressant potential. Nonsteroidal anti-inflammatory
drugs have shown benefits [114, 115], although no influ-
ence was observed in association with antidepressants
[116]. Cytokine inhibitors were found to improve de-
pression [117–119] and specific depressive symptoms,
such as anxiety [120] and fatigue [117], among patients
with psoriasis [117, 118, 120] or ankylosing spondylitis
[119]. This finding is supported by evidence from animal
models [121]. In an open-label report, aspirin exhibited
antidepressive effects, even at low doses [122], and may
have a more favourable benefit/risk ratio compared with
selective COX-2 inhibitors [123, 124]. Epidemiological
reports also support antidepressant effects of aspirin
[106, 125]. N-acetylcysteine may also be useful in treat-
ing MDD [126–128]. Statins, which apart from their
antiatherosclerotic and cardioprotective effects also dis-
play neuroprotective and anti-inflammatory effects
[129–131], showed the potential to produce mood-
related benefits [132] and are associated with a reduced
risk of depression [133]. Clinical trials of statins seem to
show antidepressant effects in aggregate [134]. In a
meta-analysis, supplementing the treatment of severe
MDD with polyunsaturated fatty acids (PUFAs) was
found to be beneficial, even though its role in mild-to-
moderate depression or prevention seems limited [135].
Studies attempting to link depression with genetic varia-

tions in the RAS provide additional evidence. Initial reports
for the most studied ACE polymorphism (I/D) – the pres-
ence or absence of a 287-bp fragment in intron 16 related
to ACE serum levels [136] – were inconsistent and a meta-
analysis showed no significance [137, 138]. However, other
single nucleotide polymorphisms have been associated with
depression [139, 140], including the GG genotype of ACE
A2350G, which also correlated with higher ACE serum ac-
tivity [141]. Recently, seven single nucleotide polymor-
phisms were significantly tied to late-life depression and
cortisol levels under stressful circumstances [142]. The
AT1R genotype (A1166C) CC is also associated with de-
pression and increased responsiveness to Ang II [6], as well
as clinical response [143, 144]. Epigenetic mechanisms also
appear to be important, as altered methylation of the
regulatory region of the ACE gene has been associated
with depression [145]. ACE polymorphisms even seem
able to influence antidepressant response [145–147],
cognitive function after a depression episode in the el-
derly [148, 149], or suicide behaviour [150, 151].
The role of aldosterone in depression is an emerging

area of research, thus regulation of aldosterone by the
RAS is another point to take into account. Patients with
primary hyperaldosteronism have depressive symptoms
[152, 153]. In animal models, administering aldosterone
leads to depressive behaviour [154], anxiety [155] and
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anhedonia [156]. Eplerone, an aldosterone antagonist,
had anxiolytic properties in rats [157]. Poorer clinical
outcome in MDD is predicted by higher salivary al-
dosterone [158, 159]. Conversely, MDD patients with
suicidal behaviour had lower concentrations of aldos-
terone compared to suicidal patients without MDD
and non-suicidal depressive patients [160]. Spironolac-
tone, another MR antagonist, induces a sleep pattern
characteristic of melancholic depression and reduces
the efficacy of amitriptyline [40]. This hints at a non-
linear dynamic of aldosterone throughout the MDD
episode, prompting its exploration as a biomarker
that is able to differentiate depression duration. In-
deed, at least in women, higher aldosterone levels are
associated with a shorter duration of a depressive epi-
sode [159], and in an animal model were used to
mark the onset of depression [161].
Taking the above evidence in aggregate, current under-

standing of the pathophysiology of depression supports the
search for novel therapeutics affecting the pathways of in-
flammation, oxidative biology, apoptosis and neurogenesis.
Besides their anti-inflammatory effects, angiotensin re-
ceptor blockers (ARBs) and ACEIs have good toler-
ability, limited side effects and are already widely
used drugs approved by the US Food and Drug Ad-
ministration [162, 163]. Their neuroprotective, anti-
inflammatory, vasodilatory [164] and microglia activa-
tion inhibitory effects [29] make them candidates for
novel therapeutic targets for inflammatory brain dis-
eases and cognitive disorders [21, 29, 30, 165, 166].
In this regard, interesting data is emerging from
animal models.
The body of evidence supporting the antidepressant

and antianxiety effects of drugs targeting the RAS in ani-
mal models is increasing. Mutant mice lacking the
angiotensin gene have less depressive-like behaviour in
the forced swim test [167]. Pharmacologically decreasing
the production of Ang II by administering captopril (an
ACEI) produces an analogous result [168].
Blockage of Ang II also leads to antidepressant-like

activity in the learned helplessness [169] and chronic
mild stress paradigms [170, 171], both more valid
models than the forced swim test. Preclinical data also
suggests a link between the antidepressant effect and a
decrease in Ang II activity; AT1R antagonism by its spe-
cific blockers losartan [3], valsartan [171], irbesartan
[170] and telmisartan [172] has similar actions to that
caused by ACEIs. As with most antidepressants, use of
these blockers also seems to have antianxiety properties.
Candesartan [21, 173], losartan [174, 175] and captopril
[176] reduced anxiety behaviour (promoting exploration)
in the elevated plus maze test. Nevertheless, enalapril (a
non-centrally acting ACEI) was not effective in normo-
tensive rats [175].

Remarkably, different phenotypes of anxiolytic response
to ARBs across different mice strains may be explained by
differences in AT1R expression levels [177]. Curiously,
mood effects were also apparent in an amphetamine-
induced model of mania in mice, which candesartan was
able to prevent and treat with comparable efficacy to lith-
ium [30]. Transgenic rats overexpressing Ang-(1-7) [178]
or ACE2 [179] showed a reduced anxiety phenotype that
is seemingly dependent on Mas signalling, since antagon-
ism of Mas reversed the phenotype. Administering Ang-
(1-7) was associated with decreased oxidative stress
markers in the amygdala [180]. The same Mas antagonism
also prevented the anxiolytic/antidepressant effect of enal-
april in transgenic hypertensive rats [181, 182].
These agents seem to influence mood disorders inde-

pendently of their blood pressure-lowering activity. A
study exploring the effect of valsartan in a chronic mild
stress model found no change in average blood pressure
after a month of treatment, while at the same time regis-
tering antianxiety and antidepressant effects [171].
Animal experiments also support the anti-inflammatory

and oxidative stress-reducing effects of these drugs as part
of their mechanisms of action. Both irbesartan and fluox-
etine decreased levels of thiobarbituric-reactive substances
– oxidative stress markers – while increasing catalase and
glutathione (antioxidants) and serotonin (5-HT) levels in
the brain [170]. Valsartan also increased neurogenesis in
mice [171]. Captopril and perindopril (both centrally
acting ACEIs) [183], telmisartan [183, 184] and candesar-
tan [21, 185, 186] all show anti-inflammatory effects by
reducing microglial activation and levels of inflammatory
markers such as nitric oxide and TNF-α.

Clinical data
To date, no RCT has assessed the effects of ACEIs or
ARBs in depression. However, observational studies have
established a bidirectional link between cardiovascular dis-
orders and depression. Antihypertensive sympatholytic
drugs such as reserpine or clonidine can induce depres-
sion [187–189], prompting some to propose that sympa-
thetic nervous system hyperreactivity is a common
substrate [190, 191]. It was unclear whether this associ-
ation was caused by hypertension itself, its treatment, or
both [192, 193].
A meta-analysis of prospective cohort studies [194]

found no evidence that hypertension is a risk factor for
depression. However, the contrary – that depression in-
creases the risk of developing hypertension – has been
suggested [195] and confirmed by a meta-analysis [196].
In light of all the evidence, the RAS now emerges as a
major link between mood and the cardiovascular system.
In the early 1980s, several cases reported that captopril

might promote mood elevation in patients with MDD
[197–199]. Mood benefits were reported in 9 patients
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with MDD, and one with bipolar disorder, who were
treated with lisinopril (an ACEI) [200]. In each case, pa-
tients were being treated for hypertension or cardiac
heart failure (see Table 1).
In a case-control study of 972 patients from primary

care practices, who had both diabetes and a new diagno-
sis of depression, those exposed to ACEIs in the last
6 months showed a lower odds ratio for depression (OR
1.3, 95% CI: 0.8–2.2) compared to those exposed to
beta-blockers (BBs) (OR 2.6, 95% CI: 1.1–7.0) and cal-
cium channel blockers (CCBs) (OR 2.2, 95% CI: 1.2–4.2)
[201]. In a recent population cohort study, ACEIs de-
creased the incidence of MDD [202]. These results were
replicated by Boal et al. [203], who examined mood-
related hospital admissions of 144,660 patients treated
with antihypertensive monotherapy for a five-year
follow-up. Interestingly, ACEIs and ARBs were associ-
ated with the lowest risk of mood disorder admissions
(log-rank P = 0.006), while CCBs (hazard ratio (HR) =
2.28, [95% CI 1.13–4.58]; P = 0.02) and BBs (HR = 2.11,
[95% CI 1.12 –3.98]; P = 0.02) were associated with in-
creased risk compared to ACEIs and ARBs. There was
no significant difference in patients receiving no antihy-
pertensive medication (HR = 1.63 [95% CI 0.94–2.82]; P
= 0.08), or those taking thiazide diuretics (HR = 1.56
[95% CI 0.65–3.73]; P = 0.32).
However, in the CREATE trial, a randomised placebo-

controlled trial of citalopram in 284 coronary heart dis-
ease patients with MDD, the use of ACEIs predicted a
worse response to citalopram [204]. A possible caveat is
that the use of ACEIs may cause bias towards more se-
vere coronary disease, and thus a possible vascular, more
refractory type of depression. Another interesting possi-
bility, considering the antidepressant properties of
ACEIs, is that their use may have prevented or even
treated milder episodes of depression, creating a se-
lection bias for more severe depression. Indeed, we
know that an increasingly smaller percentage of patients
respond or remit after trying a second or third drug after
failing previous treatments [205], and that antidepressant-
naïve patients improve their Hamilton Depression Rating
Scale score more than those taking antidepressants in re-
sponse to treatment [206].
The antidepressant effects of ACEIs can be further in-

ferred both by mood effects in the population without a
formal diagnosis of MDD, and in studies looking at qual-
ity of life. Mood elation was reported in healthy volun-
teers taking enalapril [207]. One RCT found a higher
quality of life score was attained in patients taking cap-
topril compared to other classes of antihypertensive
drugs, despite similar blood pressure control [208]. A
head-to-head comparison of captopril (a centrally acting
ACEI) and enalapril (a non-centrally acting ACEI) re-
ported no difference in antihypertensive efficacy, but

that captopril had a superior effect on quality of life
measurements [209].
In the Norwegian HUNT study [192], the depressive

symptoms of a large population of 55,472 patients
with systemic hypertension taking an ACEI were
compared with those of patients with untreated sys-
temic hypertension. Results showed an important
trend in favour of the depressive symptom-reducing
effects of ACEIs, as assessed by the Hospital Anxiety
and Depression Rating Scale (OR 0.54, 95% CI 0.28–
1.08). Interestingly, those on BBs (OR 1.20, 95% CI
0.78–1.83) or on CCBs (OR 1.04, 95% CI 0.70–1.53)
showed no reduction in depressive symptoms com-
pared to the untreated systemic hypertension group.
Again, this suggests that the pharmacological benefits
of ACEIs and ARBs in depression are independent of
their antihypertensive effects. A small open-label trial
of 17 type 2 diabetic patients taking candesartan for
at least 3 months found that depression scores were
improved [210].
Nonetheless, there are a few negative reports of the

effects of RAS drugs on mood. A small (n = 8), 6-week,
double-blind crossover trial found captopril to have no
positive effects on mood [211]. Another study found
the BB atenolol superior to captopril for self-reported
anxiety [212]. However, BBs are known to affect som-
atic anxiety, so measuring anxiety might not be an
appropriate proxy for mood in this case. In a double-
blinded trial of 451 hypertensive patients taking either
enalapril or the CCB amlodipine for 38 weeks, no dif-
ferences were found between the two drugs in terms of
quality of life measures [213]. Another 6-month
double-blind trial with 540 hypertensive patients
showed no superiority of cilazapril (an ACEI) over
atenolol (a BB) [214]. Losartan was also not superior to
nifedepine (a CCB) in a 12-week randomised double-
blind trial with 223 hypertensive patients [215].

Conclusions
A growing body of evidence suggests a role for the
angiotensin system in the pathophysiology of MDD.
Drugs targeting the RAS reduce oxidative and inflamma-
tory stress and enhance neurogenesis; all documented
pathological markers in depression. Despite the heavy
burden of depression, new drug development has been
underwhelming. While RCTs providing definitive proof
are yet to come, available preclinical and clinical data
suggest the potential antidepressant properties of ACEIs
and ARBs. The search for novel, effective, safe anti-
inflammatory drugs that act centrally in the brain are of
fundamental interest. Future clinical trials targeting the
brain angiotensin system are necessary to verify the use-
fulness of these agents in treating depression.
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Table 1 Summary of clinical evidence

Studies Findings Conclusion Limitations

MDD

Zubenko
et al., 1984

Case report of mood-elevating
effect of captopril in three
MDD patients

3 patients:
72-year-old man with CHF
44-year-old woman with HT
67-year-old man with CHF

Mood elevation of the 3 cases
with captopril

3rd case developed
psychotic symptoms

Deicken,
1986

Case report of captopril
treatment of MDD

52-year-old man with HT and D Improvement of MDD symptoms
with captopril

Germain &
Chouinard,
1988

Case report of treatment of
MDD with captopril

41-year-old man with D and posterior
diagnosis of HT

Total remission of the MDD
episode with captopril

Hertzman
et al., 2005

Collection of case reports of
lisinopril augmenting
antidepressant response
(9 MDD + 1 BD)

Mood elevation of MDD and stabilised
mood of the BD patient with lisonopril
in patients already on antidepressants or
MSs
All patients being treated for HT

Improved mood with a
combination of antidepressants
and lisinopril

Rathmann
et al., 1999

Case-control study of 972
diabetic patients

OR for MDD:
CCB: OR 2.2 (95% CI: 1.2–4.2)
BB: OR 2.6 (95% CI: 1.1–7.0)
ACEI: OR 1.3 (95% CI: 0.8–2.2)

ACEI associated with reduced risk
of MDD

Screening for MDD
made by general
practitioners

Williams
et al., 2016

Case-control study of a 5-year
cohort of 961 men with
osteoporosis

Exposure to ACEIs yields reduced risk of
MDD (OR: 0.15, 95%
CI: 0.04–0.51, P = 0.003)

ACE inhibitors were associated
with a reduced likelihood for MD
onset

Recall bias,
unrecognised
confounding and
limited generalisability

Boal et al.,
2016

5-year cohort of 144,660
patients

ACEI/ARB: 53% decreased risk of MD
admissions
CCB & BB: 2-fold increased risk of MD
admissions
TZ & NT did not attain statistical
significance

ACEI/ARB therapy had a neutral
effect (or reduced risk) on MDs

Results do not include
milder levels of MDs
treated in the
community

Negative findings in MDD

Habra
et al., 2010

RCT of citalopram in 284
patients with MDD and
coronary disease

Use of ACEIs associated with mean
HAMD response of 1.36 versus 6.42
for non-ACEI use

ACEI use predicted worse response
to antidepressant

Bias for more severe
coronary disease

Mood effects in non-depressed population

Cohen
et al., 1984

Case report of mood elation
with enalapril

Produced elation in normal volunteers
(33% controls and 27% HT subjects)

Mood elation effect

Croog
et al., 1986

RCT on the quality of life of
captopril versus methyldopa
versus propranolol in 626 male
HT patients for 24 weeks

Captopril: fewer side effects, and better
scores for work performance, visual–
motor functioning, and measures of life
satisfaction versus methyldopa (P < 0.05
to < 0.01)
Captopril: fewer side effects, less sexual
dysfunction and greater improvement
of measures of general well-being
versus propranolol (P < 0.05 to < 0.01)

Captopril group had better scores
in tests of general well-being

Testa et al.,
1993

RCT on the quality of life of
captopril versus enalapril in 379
HT men for 24 weeks

Captopril: more favourable reports of
overall quality of life, general perceived
health, vitality, health status, sleep,
emotional control (P < 0.05)

The centrally acting ACEI
(captopril) showed superior quality
of life reports despite equal anti-HT
response

Johansen
et al., 2012

HUNT study (Norway)
55,472 HT patients

OR for depressive symptoms:
ACEI: OR 0.54, 95% CI 0.28–1.08
BB: OR 1.20, 95% CI 0.78–1.83
CCBs: OR 1.04, 95% CI 0.70–1.53

Depressive symptoms were
reduced in ACEI, compared
to BB and CCB group

Self-reported data

Pavlatou
et al., 2008

Open-label study of candesartan
in 17 diabetic patients for≥ 3
months

Significant improvement in
interpersonal sensitivity (P = 0.027)
and depression scores (P = 0.026)

Candesartan (an ARB) improves
affect

No control group
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