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Abstract

Background: Epigenomes are tissue specific and thus the choice of surrogate tissue can play a critical role in
interpreting neonatal epigenome-wide association studies (EWAS) and in their extrapolation to target tissue. To
develop a better understanding of the link between tissue specificity and neonatal EWAS, and the contributions of
genotype and prenatal factors, we compared genome-wide DNA methylation of cord tissue and cord blood, two of
the most accessible surrogate tissues at birth.

Methods: In 295 neonates, DNA methylation was profiled using Infinium HumanMethylation450 beadchip arrays. Sites
of inter-individual variability in DNA methylation were mapped and compared across the two surrogate tissues at birth,
i.e., cord tissue and cord blood. To ascertain the similarity to target tissues, DNA methylation profiles of surrogate
tissues were compared to 25 primary tissues/cell types mapped under the Epigenome Roadmap project. Tissue-
specific influences of genotype on the variable CpGs were also analyzed. Finally, to interrogate the impact of the
in utero environment, EWAS on 45 prenatal factors were performed and compared across the surrogate tissues.

Results: Neonatal EWAS results were tissue specific. In comparison to cord blood, cord tissue showed higher inter-
individual variability in the epigenome, with a lower proportion of CpGs influenced by genotype. Both neonatal tissues
were good surrogates for target tissues of mesodermal origin. They also showed distinct phenotypic associations, with
effect sizes of the overlapping CpGs being in the same order of magnitude.

Conclusions: The inter-relationship between genetics, prenatal factors and epigenetics is tissue specific, and requires
careful consideration in designing and interpreting future neonatal EWAS.

Trial registration: This birth cohort is a prospective observational study, designed to study the developmental origins
of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875.
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Background
Epigenetic processes, such as DNA methylation, are
important regulators of gene expression and thus play a
vital role in human development and disease. Inter-
individual variation in infant DNA methylomes can arise
from genetic [1, 2], environmental [3], or stochastic
perturbations [4]. Epigenome-wide association studies

(EWAS) using neonate tissues can help interrogate the
inter-relationship between these factors and enhance our
understanding of the biological mechanisms underpin-
ning disease predisposition and progression. Further,
they are also instrumental in identifying diagnostic and
prognostic biomarkers.
Epigenomes are tissue specific [5] and thus the choice

of neonatal tissue is an important consideration in de-
signing a neonatal EWAS. However, the target tissues of
direct relevance to the outcome of interest are often im-
possible or extremely difficult to collect. As an alternate
approach, surrogate tissues, such as cord blood, cord tis-
sue, placenta, or buccal epithelium, are used as proxies
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for target tissues. A number of studies have compared
DNA methylation markers across different surrogate
neonatal tissues. For example, in a twin-study, Gordon
et al. [4] reported the influence of genetic factors on a
subset of variable CpGs to be higher in cord blood than
placenta or human umbilical vein endothelial cells
(HUVEC). Armstrong et al. [6] compared the DNA
methylation status of seven candidate gene loci and re-
peat sequences (LINE-1 and ALUYb7) in the genome
across three infant tissues (cord blood, placenta, and
early infancy buccal epithelium), and reported tissue-
specific differences in DNA methylation levels for most
of the tested loci. Previous studies have also observed
less concordance in the DNA methylation–prenatal fac-
tor associations performed on different infant tissues.
For example, Lesseur et al. [7] reported significant asso-
ciations between leptin DNA methylation and genetic
variation, weight-for-gestational-age, maternal adiposity,
and maternal smoking in cord blood, but not in pla-
centa. Similarly, Novakovic et al. [8] found associations
between intrauterine cigarette smoke exposure and aryl
hydrocarbon receptor repressor DNA methylation in
both cord blood and infant blood at 18 months, but not
in placenta and buccal epithelium at birth. Likewise,
Nomura et al. [9] reported links between maternal gesta-
tional diabetes, preeclampsia, and obesity with global
DNA methylation levels in placenta but not in cord
blood. Contrary to these tissue-specific DNA methyla-
tion–prenatal factor findings, Ruchat et al. [10] found a
greater than 25% overlap in the genes differentially
methylated in response to maternal gestational diabetes
in placenta and cord blood.
Even though previous comparisons have advanced our

understanding of the relationship of neonate DNA
methylomes with genetic variation, prenatal exposure
perturbations, and tissue specificity, there are still out-
standing questions that remain unanswered in context
of a neonatal EWAS. First, previous DNA methylation–
prenatal factor investigations thus far have been limited
in statistical power and coverage of the epigenome as
they have been conducted on small sample sizes (N < 100)
and/or have investigated only a few candidate genes or
repeat regions. It remains unclear how genome-wide
site-specific DNA methylation from different neonate
tissues would compare in larger sample sizes. Second,
previous comparisons have mostly scrutinized DNA
methylation profiles from cord blood, buccal epithe-
lium, and placenta, while there have been fewer reports
from cord tissue. Additionally, there is limited data on
the utility of cord tissue versus cord blood as a surro-
gate tissue in a neonate EWAS. Third, previous reports
have largely restricted their comparisons to either a few
prenatal factors or just genetic variation. These single-
faceted investigations provide a useful yet incomplete

picture of the complex associations between genetics,
prenatal factors, and epigenetics across different neo-
natal tissues.
To address the limitations of previous studies, we

provide a large-sample epigenome-wide comparison of
genome-wide DNA methylation from two neonatal tis-
sues, and their association with genetic and prenatal fac-
tor influences. To accomplish this, we first measured
and compared the inter-individual variation in DNA
methylation of the two neonatal tissues. Second, by com-
paring the DNA methylation profiles of these surrogate
tissues with the DNA methylation profiles of different
fetal and adult tissues mapped under the Epigenome
Roadmap project, we determined the target tissues that
these surrogate tissues can proxy for. Third, we investi-
gated the extent to which inter-individual variation in
these tissues can be explained by genetic factors. Finally,
we also examined the extent to which inter-individual
variation in these surrogate tissues can be explained by
prenatal factors by comparing the neonate EWAS results
from prenatal factors.

Methods
Study population
Mother–offspring dyads were prospectively recruited as
part of the Growing Up in Singapore Towards Healthy
Outcomes (GUSTO) birth cohort study, which has been
previously described [11]. Pregnant women in their first
trimester of pregnancy and of at least 18 years of age were
recruited from the two major public hospitals with obstet-
ric services in Singapore, namely the KK Women’s and
Children’s Hospital (KKH) and the National University
Hospital (NUH). To be eligible, participants had to hold
Singapore citizenship or permanent residency, or intent to
reside in Singapore for the next 5 years, were of Chinese,
Malay or Indian ethnicity, had homogeneous parental
ethnic background, and had the intention to deliver at
either NUH or KKH. Women with significant health con-
ditions such as those who were on chemotherapy or psy-
chotropic drugs were excluded from the study. The
present analysis was restricted to live singleton full-term
births, with an Apgar score of at least nine, and with in-
fant genotype and DNA methylation data (cord tissue and
cord blood) (Additional file 1: Figure A1). Gestational age
(GA) was determined by ultrasonography in the first tri-
mester. Child sex was extracted from the medical records.

Prenatal factors – demographics, maternal smoking, and
alcohol use
At enrolment, interviewer-administered questionnaires
were used to collect information on maternal age and
education. An interviewer-administered questionnaire
was also conducted at 26–28 weeks’ gestation to obtain
information on maternal occupational activity during
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pregnancy, maternal alcohol usage before and during
pregnancy, and maternal smoking behavior before and
during pregnancy. Parity (birth order) was extracted
from medical records.

Prenatal factors – maternal mood
The Spielberger State-Trait Anxiety Inventory (STAI)
scale and the Edinburgh Postnatal Depression Scale
(EPDS) were used to assess maternal anxiety and depres-
sion, respectively, at 26–28 weeks’ gestation. The STAI
instrument contains 40 items scored on a 4-point Likert
scale, with 20 items ascertaining the trait measure and
20 items ascertaining the state measure. The trait meas-
ure is a reflection of a more stable personality character-
istic, such as an anxious personality, while the state
measure is a reflection of transient characteristics of
anxiety such as anxiety disorders. The EPDS instrument
assesses 21 common depressive symptoms experienced
over the past week.

Prenatal factors – maternal metabolic/anthropometry
Pre-pregnancy weight was self-reported during study
recruitment in the first trimester of pregnancy. Maternal
height and weight were measured at 26–28 weeks’ gesta-
tion. Gestational weight gain (GWG) was calculated as
the difference between pre-pregnancy and 26–28 week
weights. Maternal pre-pregnancy BMI (ppBMI) was de-
rived as pre-pregnancy weight divided by height squared.
Maternal glucose levels (2-h post-glucose (2-h PG) and
fasting plasma glucose (FPG)) were ascertained at 26–28
weeks using an oral glucose tolerance test of 75 g after
an overnight fast (8–14 h). Maternal peripheral systolic
blood pressure (SBP) and diastolic blood pressure
(DBP) at 26–28 weeks’ gestation were measured from
the brachial artery at 30- to 60-second intervals.

Prenatal factors – maternal fatty acids and vitamins
Maternal plasma fatty acids were measured using serum
drawn at 26–28 weeks’ gestation. The fatty acids were
expressed as percentage contribution to total plasma
phosphatidylcholine fatty acid. We investigated the total
n-6 polyunsaturated fatty acids (PUFAs), the total n-3
PUFAs, the total PUFAs (n-6 PUFAs + n-3 PUFAs), the
total monounsaturated fatty acids (MUFAs), and the
total saturated fatty acids (SFAs). We also investigated
individual saturated fatty acids myristic acid, palmitic acid,
and stearic acid; monounsaturated fatty acids oleic acid and
gondoic acid; n-3 PUFAs eicosatetraenoic acid (ETA), eicosa-
pentaenoic acid (EPA), docosapentaenoic acid (DPA), and
docosahexaenoic acid (DHA); and n-6 PUFAs linoleic acid,
dihomo-gamma-linolenic acid (DGLA), and n-6 arachidonic
acid (AA). Finally, the n-6:n-3 PUFA ratio, namely AA:DHA
ratio, AA:EPA ratio, DHA:DPA ratio, and AA:(DHA+EPA)
ratio were also assessed. Maternal micronutrient levels,

including vitamin D, vitamin B6, vitamin B12, and folate,
were tested using serum drawn at 26–28 weeks’ gestation.

Tissue collection and processing
Cord blood
Up to 40 mL of cord blood was collected from infant
umbilical cords within 4 h post-delivery, either by dir-
ectly dripping into EDTA tubes for normal deliveries,
or extracted through a syringe for cords delivered
through cesarean section deliveries, then stored in
EDTA tubes. Blood samples were then centrifuged at
3000 g at 4 °C for 5 min to separate the blood into three
distinct layers – plasma, buffy coat, and erythrocytes.
The top plasma layer was then carefully extracted
(without disturbing the buffy coat), followed by extrac-
tion of the buffy coat layer. The buffy coat was stored
at −80 °C. DNA extraction from the buffy coat was per-
formed using QIAsymphony DNA kits as per the man-
ufacturer’s instructions.

Cord tissue
After the extraction of cord blood, sections of umbilical
cord tissue (~2 cm per section) were collected and
cleaned with phosphate buffer saline solution. Each sec-
tion was then cut into smaller pieces with a clean scalpel
and stored into 2 mL cryovials. The cord samples were
then snap frozen in liquid nitrogen and stored at −80 °C
until subsequent DNA extraction. For DNA extraction,
frozen umbilical cords were pulverized with a mortar
and pestle, weighed, and allowed to equilibrate to room
temperature before treatment with 10 U/mL hydraluro-
nidase enzyme, ensuring that all tissue was submerged
in the enzyme solution. Cord samples were then incu-
bated at 37 °C for 30 min on a shaker (150 rpm) in an
incubator. Then, 250 μL of Tris-NaCl-EDTA-SDS solu-
tion was added before the tissue was homogenized six
times (10 seconds each cycle) using a Xiril Dispomix
homogenizer. Samples were then pulse spun to pellet
the tissue prior to adding proteinase K, and incubated
overnight at 55 °C. NaCl (250 μL, 5 M) was added and
the contents of the tube were mixed. Samples were cen-
trifuged at 3500 g for 20 min and the supernatant trans-
ferred to a fresh tube. An equal volume of 100% ethanol
was added to the supernatant with gentle mixing to
allow DNA to precipitate. DNA was spooled and trans-
ferred to a fresh tube containing 500 μL of water and
5 μL of RNase A solution. Samples were then incubated
at 55 °C for 30 min to remove the RNA. The DNA solu-
tion was transferred to MaXtract tubes, where an equal
volume of phenol/chloroform was added with gentle
mixing, and then centrifuged at 20,000 g for 10 min. The
top aqueous layer was extracted and the phenol/chloro-
form wash step repeated. The final top aqueous layer
was extracted and a 10% volume of 3 M NaAc (pH 5.2)
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and a 200% volume of 100% ethanol was added, gently
mixed, and allowed to precipitate DNA for 10 min at
−80 °C. This solution was centrifuged at 20,000 g for
10 min to pellet down the DNA. The supernatant was
removed and the DNA pellet was washed with 70% etha-
nol, spun down again, and the supernatant removed.
The DNA pellet was air dried to the point of translu-
cency and re-suspended in 100 μL TE buffer to dissolve
the DNA.

DNA methylation data – infant cord tissue, infant cord
blood
Profiling and downstream processing of DNA methylation
data from both tissues (infant umbilical cord tissue, infant
cord blood) were conducted separately but followed simi-
lar procedures. We used the Infinium HumanMethyla-
tion450 array, following standard protocol and processed
the data using an in-house quality control procedure [12].
Raw DNA methylation beta values were exported from
GenomeStudioTM. Probes with less than three beads for
either the methylated or unmethylated channel or with a
detection P value above 0.01 were set to missing. Probes
on sex chromosomes were removed. We further retained
probes that had non-missingness in all samples. Color
adjustment and normalization of Type 1 and 2 probes was
performed. To assess the presence and impact of technical
variables, we performed a principal component analysis
(PCA) on the raw DNA methylation data and regressed
the principal components against technical variables,
including (1) chip-set (8 chips containing 96 samples per
chip-set for cord tissue; 15 chips containing 180 samples
per chip-set for cord blood), (2) chip (12 samples per
chip), (3) chip position, (4) bisulfite conversion batch (96
samples per plate), and (5) DNA extraction batch (cord
tissue only). Samples within a chip (12 samples) were
nested within a chip-set (96 or 180 samples), but samples
in the same bisulfite conversion plate (96 samples) were
not necessarily nested within a chip-set. The top principal
components from the PCA of raw DNA methylation data
were most strongly associated with the chip variable. We
thus used COMBAT [13] to adjust for chip effects. DNA
methylation beta values were first converted to M-values
before applying COMBAT to remove chip effects and the
COMBAT-corrected DNA methylation values were trans-
formed back to beta-values. We then conducted another
PCA on the COMBAT-corrected dataset. Position on
chip, bisulfite conversion batch, chip-set (for cord blood
only), and DNA extraction batch (for cord tissue only)
were associated with the top principal components and
these were adjusted for as covariates in all regression
models. Because we did not have complete information
for some of the potential sources, to allow for the possibility
of other technical artifacts besides the ones considered here,
we used surrogate variable analysis [14, 15] to estimate

sources of batch effects directly from the DNA methylation
data (surrogate variables). The surrogate variables can also
help account for cell type composition. We conducted add-
itional sensitivity analyses, where we repeated all analyses
adjusting for surrogate variables from the surrogate variable
analysis. Finally, cross-hybridizing probes [16, 17], CpGs lo-
cated at single nucleotide polymorphisms (SNPs), and
CpGs with multi-modal distribution were excluded from
the analysis. After quality control filtering, 239,560 CpGs
that passed quality control in both datasets were available
for analysis. For infant cord tissue, cellular proportions for
fibroblasts, B-cells, and T-cells were estimated [18] using a
reference panel (accession number EGAD00010000460)
[19], and their principal components were adjusted as co-
variates in the regression models. Likewise, for infant cord
blood, we used the reference panel reported by Bakulski et
al. [20] to obtain estimated cellular proportions in nucleated
red blood cells, granulocytes, monocytes, natural killer cells,
B-cells, CD4+ T-cells, and CD8+ T-cells. Their principal
components were then adjusted as covariates in all regres-
sion models. As we have previously observed that the asso-
ciation of cellular proportions with prenatal factors/DNA
methylation could be ethnicity dependent, interaction terms
between (principal components of) cellular proportions
and ethnicity were included as covariates in all regression
models (in addition to their main effects).

Genotype data
Genotyping for infant was performed using the Illumina
OmniExpressExome array. Non-autosomal SNPs as well
as SNPs with call rates less than 95% or minor allele fre-
quency less than 10% or failed Hardy–Weinberg equilib-
rium were excluded. PCA was used to confirm self-
reported ethnicity/ancestry. Samples with a call rate less
than 99%, cryptic relatedness, or sex/ethnic discrepan-
cies were excluded. Alleles were expressed at the positive
strand of the human build (hg19). After quality control
filtering, 487,176 SNPs that passed quality control were
available for analysis.

Statistical analysis
CpG sites that showed inter-individual variation in each
infant tissue
We first quantified the number of CpGs that showed
inter-individual variation in each tissue (infant umbilical
cord tissue, infant cord blood). For each CpG in each
tissue, a CpG was defined to show inter-individual
variation if the DNA methylation range (maximum–
minimum, excluding outliers) was greater than 10% and
the DNA methylation 99th percentile–1st percentile was
greater than 5%. The CpGs were segregated into four
distinct categories as (1) CpGs which showed inter-
individual variation in both tissues, (2) CpGs which
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showed inter-individual variation only in infant cord
blood, (3) CpGs which showed inter-individual variation
only in infant cord tissue, and (4) CpGs which did not
show inter-individual variation in either tissue. Each
group of CpGs was annotated in terms of their genomic
features (promoter, 5′-UTR, exon, intron, 3′-UTR, TTS,
and intergenic) and CpG content (island, shores, shelves,
open seas) using Homer annotatePeaks function (hg19).
We also annotated the genomic location of each group
of CpGs in the enhancers predicted by either the
Encyclopedia of DNA Elements (ENCODE) consortium
[21] or the Functional Annotation of the Mammalian
Genome (FANTOM) consortium [22]. For predicted
enhancers from ENCODE, we used the annotation that
was included in the Infinium HumanMethylation450
manifest file. The FANTOM5-predicted enhancer anno-
tation was obtained by using FANTOM5 Phase 1 and
Phase 2 data.

Hierarchical clustering
Two sets of hierarchical clustering analyses were
performed. First, we performed hierarchical clustering
using DNA methylation data of all the study (GUSTO)
samples (295 infant cord tissue samples, 295 infant cord
blood samples). The clustering was conducted using all
CpGs that passed quality control filtering. The clustering
analysis confirmed that all 295 infant cord tissue samples
clustered together as did all 295 infant cord blood sam-
ples (Additional file 1: Figure B2). Second, we performed
hierarchical clustering of the study (GUSTO) samples
with 25 primary tissues/cells profiled using reduced
representation bisulfite sequencing in the Epigenome
Roadmap project [5]. For each of the GUSTO tissues
(infant cord tissue, infant cord blood), the median value
across all 295 samples was used to represent each CpG
in each tissue. For DNA methylation data generated by
the Epigenome Roadmap project, we retained only DNA
methylation sites that had a minimum reads coverage of
30X and reads from both strands were combined. The
hierarchical clustering was performed using CpG sites
that passed quality control filtering in the GUSTO tis-
sues (infant cord tissue, infant cord blood), were non-
missing in at least 10 out of the 25 Epigenome Roadmap
samples, and had interquartile range greater than 10%
across different Epigenome Roadmap tissues/cells. We
also computed the Spearman correlation between each
GUSTO sample/tissue and each Epigenome Roadmap
tissue/cell.

Genetic influences on DNA methylation
We determined if inter-individual variation in DNA
methylation in each tissue could be explained by geno-
type. CpGs whose inter-individual variation in DNA
methylation could be explained by SNPs were defined to

be influenced by genetic factors (SNPs) or genotype-
associated factors. We regressed each CpG that showed
inter-individual variation in each tissue, against all
cis-SNPs (all SNPs that resided on the same chromo-
some as the CpG), using an additive genotype model. To
help increase the precision of the estimates of effect
sizes in assessing the association between genotype and
DNA methylation, we adjusted for child sex, GA, ethni-
city, cellular proportions, bisulfite conversion batch,
hospital, DNA extraction batch (for cord tissue only),
chip-set (for cord blood only), and chip position, as
these variables were associated with the top principal
components from a PCA of the COMBAT-corrected
DNA methylation dataset. We also included interactions
between ethnicity and cellular proportions in the regres-
sion models. DNA methylation outliers were truncated
to the boundary (next possible) value. For each CpG, we
reported the most significant association (smallest P
value) between the CpG and cis-SNPs. A CpG was de-
fined to be genotype-associated or have its inter-
individual variation explained by SNPs if the most sig-
nificant association between the CpG and cis-SNPs
attained a P value < 5 × 10–8, the Bonferroni threshold
typically used in genome-wide association studies (corre-
sponding to testing for approximately 106 independent
SNPs at a family-wise Type 1 error rate of 0.05). For each
tissue, we report the number and percentage of genotype-
associated CpGs out of all CpGs that showed inter-
individual variation in the tissue. We also report whether
the CpG was genotype-associated in the other tissue.

Prenatal factor influences on DNA methylation
We investigated whether inter-individual variation in
DNA methylation in each tissue could be explained by
prenatal factors. Linear regression models were used to
study the association of DNA methylation with each of
the 45 prenatal factor variables. To help increase the
precision of the estimates of effect sizes in assessing the
association between prenatal factors and DNA methyla-
tion, we adjusted for child sex, GA, ethnicity, cellular
proportions, bisulfite conversion batch, hospital, DNA
extraction batch (for cord tissue only), chip-set (for cord
blood only), and chip position, as these variables were
associated with the top principal components from a
PCA of the COMBAT-corrected DNA methylation data-
set. We also included interactions between ethnicity and
cellular proportions in the regression models. To ensure
that results were robust to the presence of outliers, out-
liers in DNA methylation and continuous prenatal factor
variables were truncated to boundary (next possible)
value. We defined a CpG to be influenced by prenatal
factors if the most significant association with the 45
prenatal factor variables had a P value < 1 × 10–3

(Bonferroni threshold to maintain a family-wise type 1
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error rate of 0.05 for testing 45 prenatal factor variables).
For each tissue, we report the number and percentage of
CpGs whose inter-individual variation could be ex-
plained by prenatal factors out of all CpGs that showed
inter-individual variation in the tissue. We also report
whether the CpG could be explained by prenatal factors
in the other tissue. Finally, we contrasted individual
EWAS results across 45 prenatal factors for the two
infant tissues.

Results
Study population
This study used 295 mother–offspring dyads from live
singleton term births, with Apgar score ≥ 9, and avail-
ability of genotype and DNA methylation data
(Additional file 1: Figure A1). Summary statistics of the
295 mother–offspring participants are provided in
Additional file 1: Tables A1, 2, and include 49%, 20%,
and 30% of subjects from Chinese, Indian, and Malay
ethnic groups, respectively. Further, 49% of the neonates
were male. We interrogated DNA methylation profiles
derived from infant cord tissue and infant cord blood

using the Infinium HumanMethylation450 array. After
quality control filtering, 239,560 CpGs could be used for
subsequent analyses (Additional file 1: Table A3).

Infant cord tissue DNA methylation showed more inter-
individual variability
As the key focus of an EWAS is to examine the inter-
individual variation in DNA methylation, we first charac-
terized and compared the variable CpGs in the two
infant tissues (Fig. 1, Additional file 1: Table A4). Of the
239,560 CpGs that passed quality control, 20% exhibited
inter-individual variation in both tissues, 21% showed
variation in only one dataset, and the remaining 59% did
not show variation in any dataset (Fig. 1a). The non-
variable CpGs were more likely to be located in pro-
moter regions and CpG islands and were less likely to be
in enhancers, while the variable CpGs were more likely
to be located in open seas and intronic/intergenic re-
gions and more likely to be in enhancers (Additional file
1: Figures A2–4). Among the tissue-specific CpGs, infant
cord tissue had more variable CpGs (18%) (Fig. 1a). In
contrast, infant cord blood was less variable, with only

ba

c

Fig. 1 Infant cord tissue showed more inter-individual variation than infant cord blood: proportion of CpGs that showed inter-individual variation
and interquartile range (IQR) in DNA methylation. a Pie chart shows the proportion of CpGs for four distinct categories: (1) CpGs which showed
inter-individual variation in both tissues, (2) CpGs which showed inter-individual variation only in infant cord blood, (3) CpGs which showed in-
ter-individual variation only in infant cord tissue, and (4) CpGs which did not show inter-individual variation in either tissue. A total of 239,560 CpGs
passed quality control in both datasets. b Plot of proportion of CpGs (vertical axis) in each tissue (out of 239,560 CpGs) with DNA methylation IQR
greater than or equal to the value specified on the horizontal axis. c Boxplots show the distribution of the DNA methylation IQR, for CpGs in infant cord
tissue (bright orange) and infant cord blood (bright blue), respectively, for each of the four categories. Outliers are not shown in the boxplots. A CpG
was defined to show inter-individual variation if the DNA methylation range (maximum–minimum, excluding outliers) was greater than 10% and DNA
methylation 99th percentile–1st percentile was greater than 5%

Lin et al. BMC Medicine  (2017) 15:211 Page 6 of 13



3% of its CpGs exhibiting inter-individual variation spe-
cific to cord blood (Fig. 1a). Additionally, as is evident
by the interquartile ranges of the CpGs (Fig. 1b, c), the
inter-individual variation was higher in the cord tissue
than in cord blood. To reduce false positives and to in-
crease statistical power, CpGs that do not exhibit suffi-
cient inter-individual variation are typically excluded
from EWAS analysis because their observed variability
can potentially be attributed to technical variability [23,
24]. Thus, a point worth noting from this finding is that
an EWAS conducted using infant cord tissue would have
more CpGs retained for downstream analysis than infant
cord blood.

Neonatal surrogate tissues primarily proxy for tissues/
cells of mesodermal origin
Infant cord tissue and cord blood are typically used as
surrogates for other target tissues [25, 26]. This has
strong implications for the clinical relevance of the iden-
tified epigenetic signatures as phenotypic biomarkers.
To evaluate the similarity of these surrogate tissues with
primary tissues, we performed a hierarchical clustering
analysis of these infant tissues with 25 primary tissues/
cells (Additional file 1: Table B1) profiled using reduced
representation bisulfite sequencing under the Epigenome
Roadmap project (Fig. 2). These 25 primary tissues/cells
comprised a good representation of tissues/cells derived
from the ectoderm (e.g., brain, represented in light pink
in dendrogram), endoderm (e.g., lung, pancreas, digest-
ive, represented in light purple), mesenchymal stem cell
(MSC)-derived mesoderm (e.g., muscle, heart, kidney,
represented in light orange), and hematopoietic stem cell
(HSC)-derived mesoderm (e.g., blood, represented in
light turquoise) germinal origins. Consistent with the
findings reported by the Epigenome Roadmap project,
tissues/cells generally clustered by their germinal origins
(Fig. 2, Additional file 1: Figure B1, Additional file 1:
Table B2). Infant cord tissue clustered with MSC-derived
mesodermic tissues and fetal tissues, while infant cord
blood clustered with the HSC-derived mesodermic tis-
sues (blood).

Genotype influences a greater proportion of variable
CpGs in infant cord blood
We assessed the extent to which genetic variation con-
tributes to inter-individual variability in DNA methyla-
tion levels (Fig. 3, Additional file 1: Table C1). Each
variable CpG in each infant tissue was regressed against
all cis-SNPs (SNPs that resided on the same chromo-
some as the CpG). We found 21% (19,126 CpGs) of the
89,871 variable CpGs in infant cord tissue to be associ-
ated with genetic variation (with at least one cis-SNP).
The corresponding proportion in infant cord blood was
31% (17,136 out of 55,810 CpGs), though infant cord

tissue still had more genotype-associated CpGs (19,126
vs. 17,136) due to more variable CpGs. This finding is
supported by a previous twin-study which found that
genetic factors explained more inter-individual variation
in cord blood DNA methylation than in HUVEC DNA
methylation [4]. Of note, HUVEC are one of the cell
types present in cord tissue. The effect sizes for the
CpG-SNP associations in both tissues were similar (Add-
itional file 1: Figure C1). The results from a sensitivity
analysis where we adjusted for surrogate variables led to
similar conclusions (Additional file 1: Figure C2), though
the percentage of SNP-associated CpGs was slightly
higher for both tissues (28% for cord tissue and 35% for
cord blood).
We further examined the overlap in genotype-

associated CpGs from the two tissues (Fig. 3b,
Additional file 1: Table C1). The overlap in genotype-
associated CpGs between infant cord tissue and cord
blood was at 41% or 46%, depending on the number
used as denominator. We attempted to replicate the
genotype-associated CpGs with those previously
reported in cord blood in the Avon Longitudinal Study
of Parents and Child (ALSPAC) cohort by Gaunt et al.
[2]. Overall, 54% of the genotype-associated CpGs from
infant cord blood in our cohort could be replicated in
infant cord blood from the ALSPAC cohort (Additional
file 1: Table C2). The lack of replication for the remain-
der of genotype-associated CpGs could be due to ethnic
differences in the two cohorts (Asian in GUSTO cohort
vs. Caucasian in ALSPAC). Smith et al. [1] reported 131
and 298 genotype-associated CpGs (out of 20,093 CpGs
analyzed) in African American and Caucasian infant
cord blood, respectively, with a similar degree of overlap
between African American and Caucasian infant cord
blood (96 CpGs, 32% or 73% depending on the number
used as the denominator).

EWAS associations in the two surrogate tissues were
distinct
We investigated the role of prenatal factors in contribut-
ing to the inter-individual variability in DNA methyla-
tion levels. For this, we regressed all variable CpGs in
each tissue with 45 prenatal factor variables separately.
A list of these 45 variables and their pairwise correlation
is shown in Fig. 4a. A CpG was defined to be associated
with the prenatal factors if it was associated with at least
1 of the 45 prenatal factor variables. As an overall
characterization of the DNA methylation–prenatal factor
relationship, we computed the number/percentage of
variable CpGs that were associated with the prenatal fac-
tors in each tissue (Fig. 4b), and the overlap in prenatal
factor-associated CpGs in the two tissues (Fig. 4c). The
prenatal factors as a whole explained a similar propor-
tion (4% of variable CpGs) of inter-individual variation
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in both tissues (Fig. 4b). The overlap in prenatal factor-
associated CpGs in the two tissues was low (Fig. 4b,
Additional file 1: Table D1). The DNA methylation–pre-
natal factor effect sizes in both tissues were similar
(Additional file 1: Figure D1). A subset of these prenatal
factor-associated CpGs also showed association with
genetic variation, at 22% and 32% for infant cord tissue
and infant cord blood, respectively (Additional file 1:
Table D2). In both the surrogate tissues, CpGs associ-
ated or not with prenatal factors showed similar inter-
individual variation and a similar distribution of genomic
features. Prenatal factor-associated CpGs in both the
tissues did not show significant enrichment in any gene
ontology pathways. Finally, we also contrasted the effects
of individual prenatal factors on individual CpGs in the

infant tissues (Additional file 1: Figures D2, 3). For a
CpG associated with a prenatal factor in infant cord tis-
sue, we examined if this CpG was also associated with
the same prenatal factor in infant cord blood (Additional
file 1: Figure D2). We also attempted the reverse ana-
lyses (Additional file 1: Figure D3). In general, we
noticed a low concordance in EWAS results from the
two neonatal tissues. Sensitivity analysis, where we ad-
justed for surrogate variables, led to similar conclusions
(Additional file 1: Figures D4–6).

Discussion
This study reports a comprehensive analysis of inter-
individual variation in genome-wide DNA methylation
in two routinely collected surrogate tissues at birth (cord

E072 (Brain)
E069 (Brain)
E074 (Brain)
E073 (Brain)
E068 (Brain)
E051 (Blood)
E050 (Blood)
E030 (Blood)

GUSTO (Cord Blood)
E031 (Cord Blood)

E035 (Blood)
E087 (Pancreas)
E110 (Digestive)
E101 (Digestive)
E077 (Digestive)
E102 (Digestive)

E081 (Brain, fetal)
E083 (Heart, fetal)

E086 (Kidney, fetal)
E088 (Lung, fetal)
E075 (Digestive)

E107 (Muscle)
E108 (Muscle)

GUSTO (Cord Tissue)
E103 (Smooth Muscle)
E111 (Smooth Muscle)
E076 (Smooth Muscle)

DNA methylation (%)
0%

50%

100%

Fig. 2 Infant cord tissue is a better surrogate for primary tissues of mesenchymal stem cell (MSC)-derived mesodermic germinal origins, while infant
cord blood is a better surrogate for primary tissues of hematopoietic stem cell (HSC)-derived mesodermic germinal origins: hierarchical clustering of
GUSTO tissues (cord tissue, cord blood) with 25 primary tissues/cells profiled using reduced representation bisulfite sequencing in the Epigenome
Roadmap project. Infant cord tissue clustered more closely with primary tissues of MSC-derived mesodermic germinal origins, while infant cord blood
clustered more closely with primary tissues of HSC-derived mesodermic germinal origins. Left panel shows heatmap of DNA methylation values, with
each row representing each tissue type and each column representing each CpG. Color changes from yellow to blue as DNA methylation changes
from 0% to 100%. Right panel of plot shows dendrogram, with tissue types of ectodermic, endodermic, HSC-derived mesodermic, and MSC-derived
mesodermic germinal origins represented in light pink, light purple, light turquoise, and light orange, respectively; GUSTO cord tissue and cord blood
are represented in bright orange and bright blue, respectively. DNA methylation values from GUSTO tissues were generated using Infinium 450 K array
(for each CpG and tissue type, the median value across all samples was used). For tissues/cells profiled by the Epigenome Roadmap project, only DNA
methylation sites with a minimum reads coverage of 30X were retained and reads from both strands were combined. Hierarchical clustering was
performed using only CpG sites that passed quality control filtering in GUSTO tissues, were non-missing in at least 10 out of the 25 Epigenome
Roadmap samples, and had interquartile range greater than 10% across different Epigenome Roadmap tissues/cells
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tissue and cord blood). This comparison between infant
cord tissue and cord blood highlights the importance of
considering tissue specificity in interrogating the rela-
tionship between genetic and prenatal factors with
epigenetic variation in neonatal tissues. Our findings
suggest that, for a neonatal EWAS conducted using the
cord tissue versus the cord blood, there will be (1) more
variable CpGs retained for subsequent phenotype associ-
ation analysis, (2) these variable CpGs will be less likely
to be associated with genotype, (3) but equally likely to
be associated with prenatal factors, and finally, (4) cord
tissue will serve as a better surrogate for target tissues of
MSC origin.
Our tissue-specific findings provide better insights into

tissue selection and hypotheses that can be addressed in

future neonatal EWAS. For discovery-based studies
related to a phenotype of interest, examining more than
one surrogate tissue can provide a more comprehensive
understanding of the underlying biological mechanisms,
and the future potential of the surrogate tissues in a
clinical setting. EWAS in surrogate tissue can also be
used for the purpose of identifying biomarkers, though
the identified biomarkers need not always reflect the
underlying biological mechanisms in the primary tissues,
and might be surrogate tissue specific. Since it is quite
likely that contrasting results will be obtained when
comparing EWAS findings from different neonatal tis-
sues, our findings also imply being careful when
attempting replication analyses, as it will be more repro-
ducible when conducted on the same tissue type.

a b

Infant Cord Tissue

Variable CpGs
Yes: SNP-associated

No: not SNP-associated

Infant Cord Blood

Fig. 3 SNPs explained a greater proportion of inter-individual variation in DNA methylation in infant cord blood (CB) than in infant cord tissue (CT):
SNP-associated CpGs detected in each infant tissue. a Pie charts show the percentage of CpGs in each infant tissue whose inter-individual variation
could be explained by SNPs (out of all CpGs which showed inter-individual variation in the infant tissue). A CpG whose inter-individual variation
could be explained by SNPs (SNP-associated) was defined to be one where the most significant association between the CpG and cis-SNPs (all SNPs
on the same chromosome as CpG) attained a P value < 5 × 10–8, the commonly used Bonferroni threshold for genome-wide association studies
(corresponding to testing for 106 independent SNPs across the genome at a family-wise Type 1 error rate of 0.05). b Overlap between SNP-associated,
non-SNP-associated (but variable), and non-variable CpGs in the two tissues. Only CpGs which showed inter-individual variation in at least one tissue
were included (N = 98,124). Examining each tissue separately, each of these 98,124 CpGs can either be SNP-associated, not SNP-associated, or not
variable in each tissue. The number of CpGs in each of these three sets in each tissue is shown in the bottom left bar chart (for each tissue the number
of CpGs from the three sets will sum to 98,124). Collectively, the 98,124 CpGs can be grouped into eight categories. The bottom right panel identifies
each of these eight categories, with the solid black dots representing the sets being considered. For example, the extreme right column identifies the
group of CpGs that are SNP-associated in both tissues. The top bar chart shows the number of CpGs in each of these eight categories. For example,
7822 CpGs were SNP-associated in both tissues
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a

b c

Fig. 4 Prenatal factors (PFs) explained a similar proportion of inter-individual variation in infant cord blood (CB) and infant cord tissue (CT): CpGs
where the inter-individual variation in DNA methylation were explained by PFs. a Heatmap shows the pairwise Spearman correlation (absolute
value) between 45 PFs. Each row/column represents each PF. Color changes from white to blue as correlation changes from zero to one. b Pie
charts show the percentage of CpGs in each infant tissue whose inter-individual variation could be explained by PFs (out of all CpGs, which
showed inter-individual variation in the infant tissue). A CpG whose inter-individual variation could be explained by PFs was defined to be one
where the most significant association between the CpG and all 45 PFs attained a P value < 1 × 10–3, the Bonferroni threshold for testing 45 PFs
at a family-wise Type 1 error rate of 0.05. c Overlap between PF-associated, non-PF-associated (but variable), and non-variable CpGs in the two
tissues. Only CpGs which showed inter-individual variation in at least one tissue were included (N = 98,124). Examining each tissue separately,
each of these 98,124 CpGs can either be PF-associated, non-PF-associated, or not variable in each tissue. The number of CpGs in each of these
three sets in each tissue is shown in the bottom left bar chart. Collectively, the 98,124 CpGs can be grouped into eight categories. The bottom
right panel identifies each of these eight categories, with the solid black dots representing the sets being considered. The top bar chart shows
the number of CpGs in each of these eight categories
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Likewise, replication studies attempted on different tis-
sue types should be carefully interpreted and the caveats
discussed accordingly.
Findings from this study also provide evidence for the

utility of infant cord tissue in a neonatal EWAS. To date,
large sample size EWAS (N > 100) have primarily been
attempted on infant cord blood. This study demon-
strates that infant cord tissue can capture distinct DNA
methylation signatures and prenatal factor influences
from infant cord blood. Additionally, the closer cluster-
ing of cord tissue with the MSC-derived mesodermic
tissues, such as skeletal muscle and smooth muscle, sug-
gests that cord tissue is a better surrogate for these pri-
mary tissues than cord blood, although this would
require further experimental validation in future studies.
This study has some limitations. First, even though we

adjusted for cellular heterogeneity using a reference
panel, residual confounding effects could persist. In such
a scenario, DNA methylation–prenatal factor associa-
tions will be more susceptible to these effects than the
DNA methylation–genotype associations. Developing
better reference panels will alleviate such limitations.
Second, the higher number of variable CpGs in cord tis-
sue could arise due to increased diversity of cell types in
cord tissue. For example, cord tissue probably consists
of a mixture of stromal, endothelial, epithelial, and blood
contamination [27], while cord blood consists of differ-
ent leukocytes. To adequately interrogate this possibility,
future studies will require fractionating constituent cell
types of cord tissue and cord blood and comparing their
DNA methylation profiles. Third, we did not profile
DNA methylation from placenta or buccal cells at birth,
or additional tissues later in the life-course. Examination
of the buccal DNA methylome could be useful at subse-
quent stages of child growth as buccal samples are non-
invasive and more accessible, thus enabling comparison
of DNA methylation patterns across the life-course.
Additionally, studies have reported that buccal cells
might be a better surrogate for brain tissue than blood
[28]. On the other hand, placenta and cord tissue can
only be examined for neonatal EWAS. Further, while
cord blood DNA methylation can be compared to DNA
methylation patterns in blood taken at later stages in
life-course, blood samples are typically not available in
early childhood. As of now, it remains unclear how
EWAS findings from cord tissue and cord blood would
relate to those from placenta, buccal cells, or tissues de-
rived later in the life-course. Future research is necessary
to address this question. Finally, while our study sample
size (N = 295) is larger than most sample sizes used in
previous tissue-specificity investigations (N < 50–100),
our study could still be underpowered, especially in the
examination of DNA methylation–prenatal factor associ-
ations with small effect sizes. In examining the DNA

methylation–prenatal factor associations, we have used a
less conservative threshold of 1 × 10–3. However, our
study sample size is comparable to frequently utilized
sample sizes for most of the prenatal factors interrogated
in this study. Thus, our observations from neonate
EWAS contributes to the current understanding of pre-
natal factor influences on the fetus in utero.

Conclusion
There has been a considerable increase in the use of
EWAS analysis to study the developmental origins of
health and disease. However, it is becoming increasingly
evident that EWAS studies are more complicated than
genome-wide association studies as epigenetic markers
are dynamic, tissue specific, and influenced by genetic
and environmental factors. Thus, designing an EWAS
warrants multiple considerations to facilitate the identifi-
cation of a reliable epigenetic signal, especially from the
surrogate tissues. This study emphasizes that the
epigenetic-genetic-prenatal factor relationship is tissue
specific and the choice of neonatal tissues used for
EWAS analyses is important to enhance the scope and
replication of the epigenetic findings in future studies.
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