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Abstract

Background: Dengue, a vector-borne infectious disease caused by the dengue virus, has spread through tropical
and subtropical regions of the world. All four serotypes of dengue viruses are endemic in the equatorial city state
of Singapore, and frequent localised outbreaks occur, sometimes leading to national epidemics. Vector control
remains the primary and most effective measure for dengue control and prevention. The objective of this study is
to develop a novel framework for producing a spatio-temporal dengue forecast at a neighbourhood level spatial
resolution that can be routinely used by Singapore’s government agencies for planning of vector control for best
efficiency.

Methods: The forecasting algorithm uses a mixture of purely spatial, purely temporal and spatio-temporal data to
derive dynamic risk maps for dengue transmission. LASSO-based regression was used for the prediction models and
separate sub-models were constructed for each forecast window. Data were divided into training and testing sets
for out-of-sample validation. Neighbourhoods were categorised as high or low risk based on the forecast number
of cases within the cell. The predictive accuracy of the categorisation was measured.

Results: Close concordance between the projections and the eventual incidence of dengue were observed. The
average Matthew’s correlation coefficient for a classification of the upper risk decile (operational capacity) is similar
to the predictive performance at the optimal 30% cut-off. The quality of the spatial predictive algorithm as a
classifier shows areas under the curve at all forecast windows being above 0.75 and above 0.80 within the
next month.

Conclusions: Spatially resolved forecasts of geographically structured diseases like dengue can be obtained at
a neighbourhood level in highly urban environments at a precision that is suitable for guiding control efforts.
The same method can be adapted to other urban and even rural areas, with appropriate adjustment to the
grid size and shape.
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Background
Dengue, a vector-borne infectious disease caused by the
dengue virus (DENV, four serotypes DENV1–4), has
spread through tropical and subtropical regions of the
world in recent decades [1]. It is transmitted by the Ae-
des mosquitoes, and in urban areas, primarily by the
anthropophilic Aedes aegypti. The total number of den-
gue infections globally has been estimated to be 390

million per year [2], of which 96 million manifest clinic-
ally, the majority of which (70%) are found in Asia. It
has been estimated that 3.97 billion people from 128
countries are at risk of dengue infection [3], and as ur-
banisation continues across much of Asia [4], the inci-
dence is liable to grow [5]. Dengue fever usually leads to
self-limiting symptoms including fever, headaches, pain
behind the eyes, nausea, vomiting, swollen glands, rash,
and joint, bone, or muscle pains [6]. However, when dengue
fever develops into severe dengue, then plasma leakage, se-
vere bleeding, severe organ impairment, and even death
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may occur [7], making dengue control an important public
health problem.
In the equatorial city state of Singapore, since the

1990s there has been a dramatic increase in the number
of notified dengue cases, and all four serotypes are en-
demic [8]. Singapore’s favourable climatic condition
(average monthly temperature varying from 26 to 28 °C),
its highly urbanised environment and its being a hub for
international travel and transition [9] make it ideal for
the breeding of Aedes mosquitoes and transmission of
dengue. Since 2013, a dengue incidence of more than
150 per 100,000 population has been reported [10] and
this has been related to a sizable disease burden to
Singapore [11]. Although a new dengue vaccine, Deng-
vaxia® (CYD-TDV), first licensed in Mexico in 2015 [12],
has been approved by the Health Science Authority in
Singapore for persons aged 12 to 45, and has been avail-
able commercially since 2017, the vaccine is primarily
effective against DENV3 and DENV4 but less so against
DENV1 and DENV2 [13], which are the predominant
serotypes in Singapore [14]. The vaccine is more effect-
ive for individuals with a prior exposure to dengue virus
[12], but increases the risk of severity in subsequent in-
fection for immune naïve individuals [15]. It is, thus, not
recommended for Singapore where endemicity and sero-
prevalence are low [16, 17].
At present, vector control remains the primary and most

effective measure for dengue control and prevention [18].
The National Environment Agency (NEA) of Singapore de-
ploys officers to inspect premises, eliminate potential breed-
ing grounds and outreach to remind residents to remove
sources of stagnant water. Such resource-intensive vector
control measures could be optimised by targeting areas
with a greater risk of transmission.
As well as providing an indication of where dengue

transmission is ongoing, incident case data also fore-
shadow where future outbreaks are most likely, and
hence provide a guide to which areas could be priori-
tised for preventive efforts. To do so requires quantify-
ing the likely number of cases in different areal units,
which can be addressed through short-term forecasting.
In the literature, various models have been proposed for

the prediction of dengue cases. Machine learning methods
(including the support vector regression algorithm, gradi-
ent boosted regression tree algorithm, and regression or
auto-regression models) have been used at national [19],
sub-national [20] and urban levels [21], using incidence
and climatic variables, including temperature, relative hu-
midity, rainfall and solar radiation. Examples from
Singapore [22–24] have provided forecasts at a national
level, with the Environment Health Institute in Singapore
currently relying on least absolute shrinkage and selection
operator (LASSO) based models, incorporating recent
case data, meteorological data, vector surveillance data

and population-based national statistics, to derive up to
3-month national forecasts to guide vector control [24]. In
the past 5 years, extensive work has been done in many
dengue-affected areas in the world on dengue forecasting,
including Thailand, Indonesia, Ecuador and Pakistan [25–
29], to create early warnings of potential dengue out-
breaks. In addition to the conventionally used meteoro-
logical or disease epidemiological information as
predictors [23, 30, 31], recent forecast models have begun
to incorporate human mobility information [32, 33], land
use [34], frequency of social media mentions and appear-
ances on online search engines [35, 36], and spatial dy-
namics [37–39] to provide additional information for
accurate predictions.
Even within a small city state such as Singapore,

spatial variations in risk may be profound, reflecting dif-
ferences in urban density, the presence of natural areas
(such as rainforest and reservoirs) and differential age
profiles of different housing estates, and as such, a finer
resolution forecast, if one were available, would poten-
tially allow better targeting of the response. The object-
ive of this study is, therefore, to develop a new approach
for spatio-temporal dengue forecasting at a finer spatial
resolution that can be routinely used by Singapore’s gov-
ernment agencies for planning of vector control for best
efficiency, and which may potentially be adapted to
other settings.

Methods
Modelling objectives
Our objective is to develop a suite of models, each of
which will make a forecast for one specified time win-
dow, based on the data available at the time the forecast
is made. Each model will predict for each neighbour-
hood the number of cases within a 1-week interval,
which will then be used to rank neighbourhoods accord-
ing to projected risk. This ranking can then be used to
identify those areas to be prioritised for interventions,
subject to resource availability. Accuracy will be assessed
by correlating observed and actual numbers of cases and
calculating the receiver operating characteristics when
neighbourhoods are classified as high or low risk.

Source of data
The forecasting algorithm uses a mixture of purely
spatial, purely temporal and spatio-temporal data to de-
rive dynamic risk maps for dengue transmission.

Spatio-temporal
The Ministry of Health, Singapore, continuously monitors
the incidence of dengue through mandatory notification
of virologically confirmed or laboratory-confirmed cases.
The residential address and date of onset of each case in
Singapore are recorded. We aggregated individual-level

Chen et al. BMC Medicine  (2018) 16:129 Page 2 of 13



data into weekly number of cases in 315 spatial units of
size 1 km× 1 km (henceforth, neighbourhoods), from 2010
to 2016, spanning the major residential areas of the
country.
The movement patterns of mobile subscribers were

derived by analysing their cell phones’ network activities
among subscribers of Starhub Ltd, one of the three
major mobile telephone companies (telcos) in Singapore.
These data were aggregated and used to determine the
connectivity between different neighbourhoods, which
was subsequently used to derive a variable we called the
connectivity-weighted transmission potential, which cap-
tures the future risk to a neighbourhood from other
neighbourhoods with current dengue cases, based on
the amount of movement from one neighbourhood to
the other. A detailed description of these data is pro-
vided in Additional file 1.
Building age was obtained from the Housing Develop-

ment Board and the Urban Redevelopment Authority
and averaged over all buildings within a neighbourhood.
Previous studies have shown that the quality of buildings
can impact the presence of potential breeding habitats
[40], thus increasing the risk of dengue transmission. Be-
cause building practices have evolved over time and
newer buildings are designed to reduce vector breeding
sites, building age is a plausible risk factor for transmis-
sion, and as preliminary analyses showed a high associ-
ation with both Aedes mosquito and dengue incidence,
this was used as a predictor in the model.
Meteorological data are incorporated to account for

the important role that climate has in the mosquito life
cycle. Despite Singapore’s small size, there are some sys-
tematic differences in climate across the country [41],
and to accommodate that, meteorological data were esti-
mated for each neighbourhood using weekly mean, max-
imum and minimum temperature, and average relative
humidity from the nearest (of 21) weather stations
across the island managed by the Meteorological Ser-
vices Singapore.

Temporal
Other than weekly incidence in the cells, individual-level
dengue incidence data were aggregated into weekly na-
tional cases as a proxy for the general epidemic level.

Spatial
The vegetation index refers to the Normalised Difference
Vegetation Index (NDVI), which is an index of plant
viridescence or photosynthetic activity. NDVI is based
on the observation that different surfaces reflect differ-
ent types of light differently. NDVI data were obtained
from the Centre for Remote Imaging, Sensing and Pro-
cessing in the National University of Singapore from a
processed satellite image. Travel history data derived

from trips made using EZLink cards (a card to pay for
public transport fares in Singapore) were used to meas-
ure how connected each neighbourhood is to other parts
of the country by public transport. These were processed
and aggregated by the provider, prior to analysis, which
derived a connectivity ranking based on the number of trips
in and out of each cell (as described in the Additional file 1).
The cells were ranked by percentile to form the connectiv-
ity ranking. In contrast to the telco data, this data source
captures short transits through neighbourhoods.
The Institutional Review Board of the National

University of Singapore provided the ethical approval for
this study.

Statistical analysis
LASSO regression was used for the prediction models
[42]. In contrast to standard linear regression in which
parameters are estimated by minimising the sum of
squares of residuals, LASSO regression imposes an extra
constraint that the sum of the absolute value of the re-
gression coefficients be less than a fixed value, which is
selected for optimal out-of-sample predictive perform-
ance. This algorithm shrinks coefficients towards zero,
with some becoming exactly zero, and hence, the covari-
ates associated with these coefficients are not associated
with the outcome variable in the model. Compared to a
simple regression, which estimates coefficients for a
pre-specified set of predictors, a LASSO regression al-
lows all covariates, at multiple lags, to be included as po-
tential predictors, despite the usual concerns about the
size of the variable space or the presence of collinear-
ities. The optimal balance between model accuracy and
complexity is obtained by varying the constraint and
optimising out-of-sample predictive accuracy over the
data not used in the model building process, which is in-
herently well suited to the problem of forecasting, as de-
scribed in earlier non-spatial work [24, 43].
Separate LASSO sub-models were constructed for

each forecast window, which were defined as the num-
ber of weeks ahead the sub-model is predicting. All 315
(approximate) squares of size 1 km × 1 km covering resi-
dential areas of Singapore were included in each
sub-model. For each sub-model, information for all 315
grid neighbourhoods at all time points in the training set
were included. Each candidate predictor appeared sev-
eral times in each sub-model, at different historical lags.
To allow for contagion and typical epidemic duration,
we used past incidence of up to 8 weeks. To accommo-
date non-linearities, we also used past incidence squared,
cubic, and square root, up to 8 weeks in the past.
Polynomials are commonly used to approximate any
non-linearity in the relationship between the covariate
and outcome, and thus, we allow (but do not force)
polynomial terms to account for potential non-linearities
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between future number of cases and autoregressive
terms. In addition, the total number of cases in nearby
areas were included at up to 8 weeks lag. Two tiers of
nearby areas were used: within 1 km radius and within a
ring from 1 km to 2 km from the centroid of the neigh-
bourhood of interest. These are depicted in Additional file 2:
Figure S1. Climatic variables (average, minimum and
maximum temperature, and humidity) of up to 5 weeks’
lag were included. Cells were included in the analysis if
the centroid falls within a residential area of Singapore;
some cells near the boundary are truncated to the part
on the main island, Pulau Ujong.
For each forecast window (from k = 1 to 12 weeks), a

separate LASSO sub-model was developed, which used
data available at the time of the forecast only. Each
LASSO sub-model is as follows:
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X7
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2
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þ
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where yt, i is the number of cases (natural log-
transformed, with 1 added to avoid logging 0) in neigh-
bourhood i in week t. The terms y2t;i , y

3
t;i and ffiffiffiffiffiffiyt;i

p are
the square, cubic and square root of the number of
cases. Similarly, nt, i, 1 and nt, i, 2 are the total number of
cases (similarly, natural log-transformed, with 1 added
to avoid logging 0) from all neighbourhoods whose cen-
troids are within 1 km radius and within a ring from
1 km to 2 km from the centroid of neighbourhood i, in
week t, respectively. Wt, i, c represents the climatic vari-
able (average, minimum and maximum temperature,
and average relative humidity) at time t in neighbour-
hood i. Tt, i measures the number of cases moving into
neighbourhood i in week t, derived from a one-time
telco dataset on the movement of users. At,i measures
average building age in neighbourhood i in week t. Nt is
the national total number of cases (natural log-
transformed, with 1 added) in week t. Vi and Ui measure
the vegetation and connectivity index of neighbourhood
i. Detailed information on the type of each set of vari-
ables are documented in Additional file 3: Table S1. Co-
variates in the LASSO regression were z-scored prior to
estimation and the coefficients were rescaled afterwards.
Parameter estimation was subject to the LASSO con-

straint:
P4

j¼1

P7
l¼0jβk j;lj þ

P2
r¼1

P7
l¼0jφkr ;lj þ

P4
c¼1

P4
l¼0j

γkc;lj þ jλk j þ jθk j þ jδk j þ jωk j þ jρk j≤p . Ten-fold cross
validation was performed and the constraint term that
optimised the out-of-sample performance was chosen as
the optimal p for the forecast model.

As the models were built separately for each forecast
window, the variables included in the final forecast
model and their lags and parameter magnitude and sign
may differ substantially.
LASSO models were built using all the data from the

training dataset, which comprised information from
2010 to 2015. Out-of-sample validation was performed
on the testing dataset consisting of data from 2016.

Effect size
The effect size of each predictor at different time lags
and for different forecast windows and the correspond-
ing 95% confidence intervals were derived by taking
1000 bootstrap samples and fitting LASSO models to
them. We used a standard bootstrap algorithm to derive
95% confidence intervals from the lower and upper 2.5
percentiles of the bootstrap sampling distribution of the
LASSO estimates. The ranges and distributions of all
predictor values were derived based on the training set
and the effect size obtained by multiplying the LASSO
coefficient and values within the range.

Forecast
As well as the forecast number of cases per neighbour-
hood, we categorised neighbourhoods as being low or
high risk, as follows. The predicted number of cases for
each neighbourhood was derived using information only
up to when the predictions were made. Model parameters
were derived from model fitting using only the training
dataset. At each forecast time point, neighbourhoods were
ordered by the predicted number of cases and categorised
as high risk if they were in the upper decile (i.e. top 32
neighbourhoods out of 315 residential areas) for that time
point. The choice of dichotomising at 10% was taken con-
sidering the operating capacity of the NEA for vector con-
trol. Predicted cases during the validation period (2016)
constitute a genuine out-of-sample forecast. During the
training period (2010–2015), the full time span was used
to estimate parameters, but only covariates available at the
time of the forecast were used to make the forecast. As
such, predictive accuracy may be slightly overstated for
the training period.

Accuracy
In the model building, predictive accuracy was measured
using the root-mean-square error. Subsequently, we
assessed the predictive accuracy by evaluating the accur-
acy of their categorisation of high-risk areas for the val-
idation dataset. For each forecast window, a receiver
operating characteristic (ROC) curve —frequently used
to evaluate classifiers’ performance—was derived [44].
Predictions and classifications at all 40 prediction time
points were aggregated to derive one ROC curve for
each forecast window. Given the actual classification of
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high- and low-risk neighbourhoods based on observed
actual incidences (i.e. the 10% of neighbourhoods with the
greatest number of cases were classified as high risk) and
our forecast models, the ROC curve demonstrates relative
trade-offs between true positives and false positives. The
area under the ROC curve (AUC), a commonly used
measurement to summarise the two-dimensional ROC
performance as a single value between 0 and 1 [45], was
derived for each forecast window. ROC, AUC and their
respective confidence intervals were obtained using 50
bootstrap samples. A baseline level AUC was also derived
using the temporal average of the number of cases from
all previous years as the prediction for all 40 prediction
time points, and we computed the AUC by comparing this
“prediction” with the actual observed distribution of cases.
To assess the robustness of the findings to the choice

of the 10% cut-off we currently adopted for the categor-
isation, an average Matthew’s correlation coefficient was
calculated for each forecast window at 14 different
cut-off points (1%, 3%, 5%, 10%, 15%, 20%, 25%, 30%,
40%, 50%, 60%, 70%, 80% and 90%). This measures the

correlation coefficient between the observed and pre-
dicted binary classification, and thus the quality of bin-
ary classifications [46], and takes a value from − 1 to 1
with 1 indicating perfect agreement, 0 indicating no bet-
ter than random and − 1 indicating total disagreement.
Matthew’s correlation coefficient was computed for each
forecast window at all prediction time points and aver-
aged over time to derive an average coefficient for each
forecast window.
All statistical analysis were performed using statistical

software R [47].

Results
Selected independent variables in the prediction model
are presented in Fig. 1. A mix of spatial and temporal
variables are shown (other independent variables are
presented in Additional file 4: Figure S2, Additional file
5: Figure S3, Additional file 6: Figure S4, Additional file 7:
Figure S5, Additional file 8: Figure S6, Additional file 9:
Figure S7, Additional file 10: Figure S8, Additional file 11:
Figure S9 and Additional file 12: Figure S10). There are

Fig. 1 Time series and spatial density of selected predictors in the LASSO model. a Time series of weekly national number of cases from 2010 to
2016. b Time series of average temperature for one arbitrarily selected residential neighbourhood from 2010 to 2016. c, d Density of vegetation
and movement for one arbitrarily selected time point for all 315 residential neighbourhoods
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no strong annual cycles in either case counts (Fig. 1a) or
climatic variables (Fig. 1b, Additional file 7: Figure S5,
Additional file 8: Figure S6, Additional file 9: Figure S7
and Additional file 10: Figure S8). The geographic distri-
bution of greenery is shown in Fig. 1c, while case move-
ment data for a random week derived from the telco
information on movement of the general population is
shown similarly on a heat map in Fig. 1d.
Figure 2 shows the forecast and actual distribution of

dengue incidence at four distinct time points (epidemio-
logical weeks 1, 14, 27 and 40 for 2016) for 4-week
ahead forecasts (predictions at other time points are pre-
sented in Additional file 13: Video S1, Additional file 14:
Video S2, Additional file 15: Video S3, Additional file 16:
Video S4, Additional file 17: Video S5, Additional file 18:
Video S6, Additional file 19: Video S7, Additional file 20:
Video S8, Additional file 21: Video S9, Additional file 22:
Video S10, Additional file 23: Video S11 and Add-
itional file 24: Video S12 for forecast windows 1 to 12).
These demonstrate the close concordance between the
projections and the eventual incidence. The average
Matthew’s correlation coefficient for all 12 forecast win-
dows at 14 different risk classification cut-offs are shown
in Fig. 3 (and tabulated in Additional file 25: Table S2).
For most of the forecast windows, a classification of the
upper risk decile—the operational capacity—as high risk
had similar predictive performance as the optimal (30%).
The quality of the spatial predictive algorithm as a

classifier is measured by ROC curves and the respective

AUCs. ROC curves for prediction windows at 1, 2, 4,
8 and 12 weeks are presented in Fig. 4 (bootstrap confi-
dence intervals are very narrow and are not shown in
the figure). All AUCs at forecast windows up to 12 weeks
are above 0.75 and within 5 weeks, AUCs are above

Fig. 2 Actual distribution of cases (dark blue dots) and 4-week ahead forecasts of density at four time points (epidemiological weeks 1, 14, 27 and 40
for 2016). Yellow indicates neighbourhoods with relatively fewer predicted cases and dark red indicates those with relatively more predicted cases

Fig. 3 Average Mathew’s correlation coefficient for all 12 forecast
windows at 14 different cut-offs (1%, 3%, 5%, 10%, 15%, 20%, 25%,
30%, 40%, 50%, 60%, 70%, 80% and 90%). Cut-off are set at different
levels so that different percentages of the neighbourhoods are
classified as higher risk areas
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0.80, indicating adequate performance in attributing
neighbourhoods to be at high risk of imminent or on-
going transmission. The baseline AUC that uses the
average of all past years’ cases as the prediction for
the out-of-sample forecast is derived to be 0.78,
which is better than guessing (i.e. the AUC is greater
than 0.5) but which demonstrates that there are sub-
stantial gains in short-term predictive performance
resulting from using updated data streams within our
framework. Predictions for 6 weeks ahead and beyond
revert to baseline risk.
The effect of risk factors on local dengue risk are

shown in Figs. 5, 6 and 7. Figure 5 shows the effects of
case counts within the neighbourhood and in proximate
neighbourhoods for the 1-week ahead forecast model at
three different time lags. The number of cases in a
neighbourhood has a larger effect over short time lags
compared to longer time lags, while the number of prox-
imate cases has an effect size close to 0 at all lags. Al-
though the relationship can be non-linear through the
polynomial terms, the estimated effect is approximately
linear. Climatic variables and their effects are shown in
Fig. 6 (at time lags 2 and 4 for the 1-week ahead fore-
cast). Maximum temperature, minimum temperature
and relative humidity had a larger effect at longer time
lags than the week immediately preceding the predic-
tion, but relative to incidence, the effect is negligible.
Figure 7 shows the effects of parameters without time

lags. As expected, an increasing number of national
weekly cases, less greenery, older buildings, greater con-
nectivity to other areas and more incoming travellers to
the area implied more cases. These parameters generally
had a bigger effect than climatic variables, after adjusting
for incidence and all other independent variables in the
model. For each forecast window, the probability of each
parameter being included in the final model, the esti-
mated parameter coefficient and respective confidence
interval are shown in Additional file 26: Tables S3 to S14
based on 1000 bootstrap samples. Incidence and neigh-
bouring incidence at shorter lags were more likely to be
included in the final model while climatic variables had
a relatively smaller probability of being included and a
smaller effect size.
An overall view of the 1-week ahead prediction model is

shown in Fig. 8 (summaries for other all other forecast
windows are shown in Additional file 27: Figure S11,
Additional file 28: Figure S12, Additional file 29: Figure
S13, Additional file 30: Figure S14, Additional file 31:
Figure S15, Additional file 32: Figure S16, Additional file 33:
Figure S17, Additional file 34: Figure S18, Additional file 35:
Figure S19, Additional file 36: Figure S20 and
Additional file 37: Figure S21). Panels Fig. 8(a) show the
yearly sum of the 1-week ahead predicted number of cases
and actual observed number of cases in all neighbour-
hoods. The relative sizes of the discrepancies were gener-
ally larger for smaller numbers, where accuracy may be
less important, but the majority of predictions were
accurate. Panels Fig. 8(b) show the average risk over
all prediction points for the 1-week ahead forecast.
Neighbourhoods in the east of Singapore had a higher
risk than the other regions.

Discussion
In Singapore, the average annual economic impact of
dengue has been estimated to be around US$100 mil-
lion, of which 42–59% is attributable to the cost of con-
trol [11]. Routine surveillance identifies residential and
workplace addresses for all notified cases, which leads to
dengue clusters being identified, namely localities with
putatively active transmission where NEA’s vector con-
trol intervention is targeted [48]. A cluster is formed
when two or more cases have onset within 14 days and
are located within 150 m of each other based on the ad-
dresses as well as movement history. Three alert levels,
depending on the number of cases in the cluster, lead to
efforts to mobilise the community to check their prem-
ises for mosquito breeding, and guide the extent of
NEA’s vector control intervention. However, these alert
levels are based on current or recent infections, rather
than the areas most likely to see further transmission.
Being able to focus control on where new cases are most
likely to arise, rather than where they are currently,

Fig. 4 Aggregate ROC curves for forecast windows at 1, 2, 4, 8 and
12 weeks for classification of actual high- and low-risk neighbourhoods,
aggregated over out-of-sample forecasts in 2016. The corresponding
AUC values are marked. Because the bootstrap confidence intervals are
very narrow, only average ROC curves are presented on this graph. AUC
area under the ROC curve, ROC receiver operating characteristic
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could allow preemptive mitigation and potentially yield
greater efficiencies and reduce costs accordingly.
Thus, in this study we developed a novel method to

forecast spatial risk within an urban environment at a
neighbourhood resolution up to 3 months in advance,
using a LASSO-based prediction model. The method gave
rather accurate forecasts (AUCs > 0.8 within the next
month), with a high correlation with the subsequent inci-
dence data. However, for longer forecast windows, the risk
reverted to a baseline risk profile for the neighbourhood.
By implementing it as part of our standing vector control
programme, the spatio-temporal prediction model can po-
tentially change the current dengue control paradigm into
a dengue prevention approach by forecasting dengue risk
at a finer resolution in the urbanised environments in
which the dengue vectors proliferate. This would allow

targeted public health control measures that would use re-
sources most efficiently. The system was robust to
changes in the baseline incidence over time (illustrated in
Fig. 1a), as demonstrated in the high correlation between
observed and predicted incidence (Fig. 8a). As such, secu-
lar changes in the detection rates due to better diagnosis
or in incidence due to changes in immunity or dominant
serotypes may not matter unless the change is large.
This approach can readily be automated to run on

routinely collected notification data, but the accuracy of
the prediction is dependent on the timeliness at which
notification data become available and the accuracy of
such data. The approach does not require that all infec-
tions be notified or confirmed by a lab—the low rate of
symptomatic dengue presentation is well known [49]—
as long as the rate remains relatively stable over space

Fig. 5 Histogram of the distribution and effect size on 1-week ahead forecast of dengue cases per neighbourhood. Recent case counts in
neighbourhoods and total number of cases in the immediate vicinity are shown, at three time lags (2, 4 and 8). Histograms of the distribution are
shown in the lower panes. The effects of covariates compared to the mean for that covariate are shown in the upper panes. Confidence intervals were
derived using bootstrap sampling and are 95% equal tailed intervals
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Fig. 6 Distribution of climatic parameter and parameter effect in excess of the mean effect at two different time lags (2 and 4) for 1-week ahead
forecasts. Upper panes show the effect and lower panes show the distribution of parameters. Confidence intervals were derived using bootstrap sampling

Fig. 7 Distribution of parameters without time lags and parameter effect in excess of the mean effect. Upper panes show the effect and lower
panes show the distribution of the parameters. Confidence intervals were derived using bootstrap sampling
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and time. The training dataset used in this modelling
framework, however, may need to be updated regularly.
In the current approach, the performance for 2016 (the
data for which were not used in training) was good
(AUC above 0.75 for all forecast windows), and so we
recommend retraining the algorithm every year.
Through regular evaluation of all the parameter effect

sizes, variables with a constant minimal effect in the
forecast model may be eliminated, reducing the cost of
obtaining them. Other potential parameters may be
added to the model in a similar way. The frequent modi-
fication of the model to allow additional data streams to
be incorporated will ensure the model continues to
enjoy high predictive performance.
We expect that the same method can be adapted to

other urban and even rural areas, though in the latter, the
grid size determining neighbourhoods may need to be ad-
justed. We used a regular grid, but the framework lends it-
self to other tessellations, for instance, administrative
boundaries. We anticipate that such regional or
neighbourhood-level forecasts will have improved accur-
acy and utility than predictions of aggregate national-level
data streams.
There are several limitations of the approach outlined

herein. The forecast is phenomenological rather than
mechanistic, and as such may break down in the pres-
ence of changes to the underlying epidemic process and
changes to interventions. A previous non-spatial forecast
(described in Ref. [24]) struggled to reproduce the mag-
nitude of the record-breaking outbreak of 2013, for in-
stance, although it was able to herald the timing of the
outbreak in advance. Fundamental changes, such as vac-
cination or the introduction of a new serotype to the
population, may require the retraining of the algorithm
if the accuracy is not to be deleteriously affected. Further
mechanistic modelling could be valuable in providing
additional insight into the spatial structure of dengue
transmission in Singapore, if challenges about non-notified
infections and the paucity of data on historic exposures to

each serotype could be overcome. The multiple lags and
forecast windows allows highly predictive combinations of
variables to be selected, but have the effect of obscuring re-
lationships, and as a result, the approach is not suitable for
identifying why particular neighbourhoods are predicted to
be at risk of future or imminent transmission. The most
important limitation to the work is its high reliance on a
rich dataset of georeferenced case identifications being
available in near real time. This is possible in Singapore’s
comprehensive case notification system but may be less
feasible in jurisdictions that do not enjoy Singapore’s small
size and the clear demarcation of the city population. The
effectiveness of vector control measures based on the fore-
cast is not evaluated in the current model, and to predict
the impact would require additional data streams that cap-
ture the details of the ongoing vector control efforts. This
would be an avenue for further work.

Conclusions
In conclusion, this report demonstrates that spatially re-
solved forecasts of geographically structured diseases like
dengue can be obtained at a neighbourhood-level in
highly urban environments at a precision that is suitable
for guiding control efforts.
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