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Abstract

Background: Congregate settings may serve as institutional amplifiers of tuberculosis (TB) and multidrug-resistant
tuberculosis (MDR-TB). We analyze spatial, epidemiological, and pathogen genetic data prospectively collected from
neighborhoods surrounding a prison in Lima, Peru, where inmates experience a high risk of MDR-TB, to investigate
the risk of spillover into the surrounding community.

Methods: Using hierarchical Bayesian statistical modeling, we address three questions regarding the MDR-TB risk:
(i) Does the excess risk observed among prisoners also extend outside the prison? (ii) If so, what is the magnitude,
shape, and spatial range of this spillover effect? (iii) Is there evidence of additional transmission across the region?

Results: The region of spillover risk extends for 5.47 km outside of the prison (95% credible interval: 1.38, 9.63 km).
Within this spillover region, we find that nine of the 467 non-inmate patients (35 with MDR-TB) have MDR-TB
strains that are genetic matches to strains collected from current inmates with MDR-TB, compared to seven out
of 1080 patients (89 with MDR-TB) outside the spillover region (p values: 0.022 and 0.008). We also identify eight
spatially aggregated genetic clusters of MDR-TB, four within the spillover region, consistent with local transmission
among individuals living close to the prison.

Conclusions: We demonstrate a clear prison spillover effect in this population, which suggests that interventions in
the prison may have benefits that extend to the surrounding community.
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Background
In 2016, the latest year for which estimates are available,
there were 490,000 incident cases of multidrug-resistant
tuberculosis (MDR-TB) [1]. Individuals with MDR-TB
have a disease that is resistant to at least isoniazid and
rifampicin and they are at substantially elevated risk of
treatment non-response, treatment-related side effects,
and mortality, even if drug resistance is recognized and
treatment with appropriate second-line drug regimens is
available [2–4].

MDR-TB arises as a consequence of failed treatment
or by direct transmission from an individual infectious
with MDR-TB. Measures of the relative importance of
failed treatment and direct transmission as drivers of
MDR-TB are not easy to obtain in the setting of com-
plex epidemics, where reports of treatment history and
prior drug susceptibility results are often unreliable or
unavailable. Nonetheless, an analysis based on program-
matic data [5] and an inference based on fitting trans-
mission dynamic models to data [6] reveal that direct
transmission of MDR-TB is now the dominant mechan-
ism driving incidence in most settings. Therefore, the
success of interventions that aim to mitigate the rise of
MDR-TB will depend critically on their ability to identify
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where transmission occurs and who is at the highest risk
of infection.
It has been suggested that specific types of congregate

settings, especially hospitals and prisons, can serve as
institutional amplifiers of TB [7, 8], and in particular,
MDR-TB [9–13]. This hypothesis suggests that the high
incidence rates of TB and MDR-TB reported in congre-
gate settings can lead to spillover risk in the community
[14], especially in settings where there is a rapid turn-
over of members in the congregate setting or there are
opportunities for interaction between community mem-
bers and those in the congregate setting. Consistent with
this hypothesis, a statistical analysis of country-level data
from eastern Europe and central Asia found that rates of
growth of the prison population were positively associ-
ated with increases in both TB incidence and the risk of
MDR-TB [15]. Several studies have also documented the
likely spillover of TB from prisons to communities
[16] and an increased risk of MDR-TB in spatial
proximity to prisons [12, 17] and in areas where
former prisoners reside [18].
In this work, we develop hierarchical Bayesian statis-

tical models to investigate the hypothesis that an
elevated MDR-TB risk for prisoners (documented in an
earlier study [19]) produces detectable spillover effects
in the surrounding neighborhoods of Lima, Peru. In our
analytic framework, we simultaneously test this hypoth-
esis and estimate the magnitude, shape, and spatial range
of the spillover effect. In addition, we further investigate
the possibility of local transmission of MDR-TB within
these neighborhoods through an analysis of the residual
spatial correlation in risk among the patients and an
exploration of genetic clusters of specific strains of
Mycobacterium tuberculosis.

Methods
Data description
Between 2008 and 2010, sputum, as well as basic
demographic and clinical data, were collected from all
individuals with suspected TB living in two of the
four large regions of metropolitan Lima (Callao and
Lima Sur). The geographic region and study popula-
tion are presented in Fig. 1 (jittered to protect confi-
dentiality). These data were collected in the context
of a population-wide implementation study of the
Microscopic Observation Drug Susceptibility assay, a
rapid test for TB and MDR-TB. Full details of the
field methods are available in a previous publication
[19]. All isolates included in this study have been
tested for susceptibility to isoniazid and rifampin and
have been genotyped by 15-loci MIRU-VNTR [20]. In
total, approximately 71% of all culture-positive isolates
had genotyping and geographic data and were in-
cluded in this analysis [19].

For this analysis, we used individual-level information
about the patients including sex (male or female), spu-
tum smear positivity indicator (yes or no), previous TB
treatment status (yes or no), average socioeconomic sta-
tus of their city block (lower, middle, and upper tertiles),
population density of their city block (number of people
per city block), age category (<25, 25–64, or 65+ years),
prisoner status (yes or no), and longitude and latitude of
residence at time of diagnosis. In total, our analysis
includes 1587 TB patients after removing those with
missing covariate information. Of these patients, 115
shared a residence with at least one other patient in the
study. Table 1 displays the summary information for this
population by MDR-TB status.

Spillover risk analysis
We develop hierarchical Bayesian statistical models that
simultaneously account for the potential of elevated
MDR-TB risk for an individual due to a number of
sources including (i) individual-level risk factors, (ii)
proximity to the prison (representing potential spillover),
and (iii) spatial proximity to other MDR-TB cases
(representing the possibility of local transmission). In
our analyses, each TB patient is categorized as having
MDR-TB or drug-susceptible TB (i.e., any phenotype
that is not MDR-TB) and we model the probability that
a patient has MDR-TB as a function of these different
sources of risk.
Specifically, we define Yi(si) ∣ pi(si)~Bernoulli(pi(si)), i

= 1, …, n, where Yi(si) is equal to 1 if individual i residing
at spatial location si has MDR-TB and is equal to 0
otherwise. pi(si) describes the individual’s personal prob-
ability of being an MDR-TB patient and n is the number

Fig. 1 Graphical summary of the study population. Patient locations
are jittered to protect confidentiality. Black lines represent within-region
boundaries. MDR-TB Multidrug-resistant tuberculosis
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of individuals in the study. We note that multiple indi-
viduals can be located at the same residence, leading to
identical spatial locations in the analysis. Therefore, we
define the set of unique spatial locations as s�j . Each si
maps to a particular s�j for j = 1, …m, where m represents

the total number of unique spatial locations and is less
than the total number of patients, n.
Next, we introduce a model for an individual’s per-

sonal probability of having MDR-TB that accounts for
the patient’s personal risk factors, distance to the prison,
and spatial proximity to other individuals such that

Φ−1 pi sið Þð Þ ¼ xTi βþ λg si−sp
�� ��; θ� �þ w sið Þ;

where Φ−1(.) is the inverse cumulative distribution func-
tion of the standard normal distribution, resulting in a
probit regression model. xi is a vector of individual-level
risk factors, which are displayed in Table 2. β is a vector
of unknown regression parameters. The function λg(‖si
− sp‖; θ) describes the impact of a patient’s proximity to
the prison on MDR-TB risk, where sp is the longitude
and latitude of the prison, ‖.‖ is the Euclidean distance
function, and λ, θ are unknown parameters that describe
the magnitude of the spillover risk and the spatial range
of the spillover effect, respectively. Finally, w(si) is a
spatially correlated random effect specific to the individ-
ual’s location of residence that is useful in identifying
residual MDR-TB risk based on spatial location alone,
which is risk that is potentially due to local transmission.

We are primarily interested in determining if proxim-
ity to the prison has any impact on an individual’s
MDR-TB risk and formally test this hypothesis through
the inclusion of λg(‖si − sp‖; θ). We test a number of
competing options that each make a different assump-
tion regarding the range and shape of the potential spill-
over effect, and formally compare the models using two
Bayesian model selection techniques: the Watanabe–
Akaike information criterion (WAIC) [21, 22] and Dk

[23]. WAIC is used primarily when the model is
intended for explanatory purposes while Dk, a posterior
predictive loss metric, is used to compare the predictive
capabilities of different models. Both metrics balance
model fit and complexity with smaller values of each
being preferred. Following [24], we set k = 1010 and use
the Bernoulli distribution deviance, with continuity cor-
rection, when calculating Dk. Our competing models are
created by defining g(‖si − sp‖; θ) as 1(‖si − sp‖ = 0) (pris-
oner indicator), 1(‖si − sp‖ ≤ θ) (constant spillover risk),
exp{−‖si − sp‖}1(‖si − sp‖ ≤ θ) (exponential spillover risk),
and exp{−‖si − sp‖

2}1(‖si − sp‖ ≤ θ) (Gaussian spillover
risk), where 1(.) is an indicator function that is equal to
1 if the input statement is true and is equal to 0
otherwise.
The prison indicator model assumes that only those pa-

tients located at the prison have increased MDR-TB risk,
indicating no spillover effect. The constant spillover risk
model suggests that there is a spillover effect extending

Table 1 Study population characteristics

Tuberculosis type

Characteristic Multidrug-
resistant

Drug
susceptible

Total 164 1423

Prisoner status (yes) 7 (0.04) 33 (0.02)

Sex (male) 102 (0.62) 897 (0.63)

Smear positive (yes) 147 (0.90) 1271 (0.89)

Previous treatment (yes) 79 (0.48) 346 (0.24)

Socioeconomic status category

Upper tertile 9 (0.05) 73 (0.05)

Middle tertile 65 (0.40) 485 (0.34)

Lower tertile 90 (0.55) 865 (0.61)

Age category

[18–25) 36 (0.22) 376 (0.26)

[25–65) 120 (0.73) 951 (0.67)

65+ 8 (0.05) 96 (0.07)

Population density (per city block) 127.99 (57.84) 121.90 (57.38)

Distance to prison (kilometers) 15.07 (12.10) 18.36 (11.57)

Counts with proportions in parentheses are shown for categorical variables.
Means with standard deviations in parentheses are shown for continuous variables

Table 2 Inference from the Gaussian spillover risk model

Quantile

Parameter Mean SD 0.025 0.975

Intercept –2.23 0.71 –3.90 –1.20

Previous treatment: yes vs. no 0.81 0.24 0.44 1.35

Sex: female vs. male 0.11 0.16 –0.17 0.46

Smear positive: yes vs. no 0.11 0.22 –0.29 0.58

Socioeconomic status:

Middle vs. upper –0.19 0.30 –0.81 0.39

Lower vs. upper –0.40 0.31 –1.10 0.15

Population density 0.01 0.09 –0.17 0.19

Age category

[25–65) vs. [18–25) –0.01 0.16 –0.33 0.31

65+ vs. [18–25) –0.27 0.32 –1.00 0.30

Spillover magnitude (λ) 0.49 0.28 0.01 1.13

Spillover range (θ), kilometers 5.47 1.83 1.38 9.63

Regression parameter variance (σ2δ) 0.90 0.86 0.18 3.10

Spatial variance parameter (σ2w ) 1.71 1.55 0.11 5.53

Posterior means, posterior SDs, and posterior quantiles are presented.
Parameters whose 95% credible intervals do not include 0 are shown in bold,
indicating an increased (positive effect) MDR-TB risk for a patient with the
particular characteristic
MDR-TB multidrug-resistant tuberculosis, SD standard deviation
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outside the prison that is constant in magnitude for all
patients within the range of influence (controlled by the
unknown parameter θ). The exponential spillover risk
model suggests that the risk is highest at the prison and
decays based on the function exp{−‖si − sp‖}1(‖si − sp‖ ≤ θ)
as distance from the prison increases. After a certain dis-
tance θ, the risk is, again, assumed to be zero. The Gauss-
ian spillover risk model is similar to the exponential
version, except that it replaces the exponential decay func-
tion with exp{−‖si − sp‖

2}1(‖si − sp‖ ≤ θ).
We are also interested in understanding if there is

additional residual risk associated with proximity to
other MDR-TB cases. Therefore, we introduce random
effects that aim to detect pockets of increased MDR-TB
risk due to spatial location alone. The w(si) parameters
are spatially correlated random effects that account for
any residual spatial variability in MDR-TB risk (after
controlling for individual-level characteristics and prox-
imity to the prison). The vector of spatially correlated

random effects, w ¼ fwðs�1Þ;…;wðs�mÞgT , is modeled
using a Gaussian process prior distribution with
spatially structured covariance matrix [25] such that w
j ϕ � MVNð0; σ2wΣðϕÞÞ where MVN(., .) represents the
multivariate normal distribution and σ2wΣðϕÞ describes
the variance/covariance of the random effects. This
specification allows us to determine if there are highly
localized regions of MDR-TB risk, possibly due to
transmission. Random effects associated with individ-
uals who are separated by a short distance are assumed
to be more similar a priori, leading to similar estimates
of individual-level risk (pi(si)). We allow the data to in-
form about the distance that this correlation extends
from a particular location and what type of impact it
has on MDR-TB risk in general. Specifically, we model
the covariance between two of the random effects by
defining σ2wΣðϕÞij as

Covariance w s�i
� �

;w s�j
� �n o

¼ σ2wρ s�i −s
�
j

��� ���;ϕ� �
;

where σ2w represents the total variance of the random ef-
fect distribution, ϕ controls the range of spatial correl-
ation (at what distance random effects are uncorrelated),
and ρ(.; .) is an isotropic spatial correlation function that
describes the correlation between random effects as a
function of the distance between spatial locations [25].
In our application of the model, we choose the spherical
correlation structure because it provides us with an
exact definition of the range of spatial correlation, 1/ϕ.
The spherical correlation function is defined as

ρ d;ϕð Þ ¼ 1−1:5ϕd þ 0:5 ϕdð Þ3; if 0≤d≤1=ϕ;
0; if d≥1=ϕ;

�

where d is the distance between spatial locations.

Predicted probabilities of MDR-TB at new spatial loca-
tions are obtained through the posterior predictive dis-
tribution of individual-level probabilities, f(pi(si)| Y),
where Y = {Y1(s1),…,Yn(sn)}

T, using properties of the
conditional multivariate normal distribution and com-
position sampling [25]. The mean and standard devi-
ation of the posterior predictive distributions are plotted
to assess the geographic risk of MDR-TB across the
study region.

Molecular analysis
The spatially correlated random effects identify areas that
have excess residual MDR-TB risk. To determine if this
excess risk may be due to local transmission, we further
interrogate these regions using 15-loci MIRU-VNTR ge-
notypes [20]. If multiple genetically matched isolates are
identified in a single high MDR-TB risk region, we deem
local transmission to be probable. Specifically, we first
identify estimated spatial random effects whose upper
95% credible intervals are larger than 0, indicating a statis-
tically significant increased local risk of MDR-TB (i.e., Pðw
ðs�j Þ > 0jY Þ≥0:95 ). Next, based on the estimated spatial

range of correlation for these random effects (posterior
mean of 1/ϕ), we create buffers around these significant
spatial random effects with a radius equal to this distance.
We then look within these buffers to determine if there
are at least two individuals with a statistically significant
increased MDR-TB risk. For those buffers that meet these
requirements, we examine whether the observed strains
have identical MIRU-VNTR patterns.
We also examine the MDR-TB strains from individuals

residing within the estimated range of the spillover effect
from the prison (posterior mean of θ). These MDR-TB
strains are then compared with MDR-TB strains from
current inmates to investigate further the possible mech-
anism of the spillover effect identified through the
spatial analysis.

Prior specification
To specify the model fully within the Bayesian framework,
prior distributions must be selected for each of the un-
known model parameters. When possible, we select weakly
informative prior distributions for the data to drive the in-
ference rather than our prior beliefs. The regression param-
eters are assumed to arise independently from a common
Gaussian distribution such that β j; λ � Nð0; σ2δÞ with σ2δ
� Inverse Gammað0:01; 0:01Þ. The spillover range param-
eter, θ, is assigned a Uniform(0, 10) kilometers prior based
on the distribution of patients surrounding the prison and
reasonable expectations regarding the distance of a spillover
impact. The variance of the spatial random effect distribu-
tion, σ2w , is given an Inverse Gamma(0.01, 0.01) prior while
a Gamma(0.10, 0.10) prior distribution is selected for the
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spherical correlation range parameter, ϕ. In addition, we
assess the sensitivity of our results to the choice of prior
distributions for the variance parameters by rerunning
the final selected model while specifying σδ, σw~Uni-
form(0, 100).

Computing and model fitting
Each of the proposed models are fitted in the Bayesian
setting using Markov chain Monte Carlo sampling tech-
niques with R statistical software [26]. For each model,
we collect 90,000 samples from the joint posterior distri-
bution of the model parameters after a burn-in period of
10,000 iterations. To reduce the autocorrelation in the
Markov chains and ease the computational burden of
summarizing 90,000 posterior samples (particularly with
respect to prediction), we thin the chains, resulting in a
final set of 5000 posterior samples. Convergence was
assessed through visual inspection of individual param-
eter trace plots and by monitoring the Geweke diagnos-
tic measure [27]. Neither approach suggested any
obvious signs of non-convergence.

Results
Data description
We have a total of n = 1,587 TB patients in m = 1,509
unique spatial locations. As shown in Table 1, 164 of the
TB patients have MDR-TB (10.3%). The factor most
closely associated with increased risk of MDR-TB is pre-
vious treatment for TB; 18.6% of previously treated indi-
viduals have MDR-TB compared to 7.3% of treatment
naive individuals. We note that previous TB treatment
status among those with MDR-TB is an imperfect proxy
for transmitted MDR-TB. Individuals without previous
treatment are assumed to have MDR-TB as a conse-
quence of direct transmission, but those with previous
treatment may have MDR-TB as a result of transmission
or acquisition during their prior treatment. Current im-
prisonment is also associated with MDR-TB. Among the
40 inmates with TB, 17.5% have MDR-TB compared to
10.2% of individuals in the general population.

Spillover risk analysis
Additional file 1: Table S1 displays the model compari-
son results along with a measure of model complexity
for each metric (pWAIC for WAIC and P for Dk). The
prisoner indicator model provides an improved fit over
the constant spillover risk model, indicating that the
assumption of constant risk in the area surrounding the
prison may not accurately reflect the true nature of the
spillover. However, a substantial improvement in model
fit is observed when different shapes of spillover risk are
considered. The exponential and Gaussian spillover risk
models have an improved fit overall compared with the
prisoner indicator model. This indicates that there may

be a spillover effect and that the resulting excess risk de-
creases as distance from the prison increases, before be-
coming 0.
The WAIC and Dk results between these two models

are comparable overall, so we examine the inference for
λ, the parameter controlling the magnitude of the spill-
over risk, to make our final model selection. While the
posterior mean of λ is comparable between both models,
the 95% credible interval of the parameter for the expo-
nential spillover risk model is slightly below 0. The cor-
responding interval from the Gaussian spillover risk
model excludes 0 (Table 2). Therefore, we further
explore the results of the Gaussian spillover risk model
in the remaining analyses but note that the results are
generally comparable between both models.
In Table 2, we present the posterior inference for each

of the parameters in the Gaussian spillover risk model.
Parameters whose 95% credible intervals are strictly
larger than 0 indicate an increased risk of MDR-TB for
patients in those categories, with a similar interpretation
for strictly negative results. As expected, patients who
have been previously treated for TB are more likely to
have MDR-TB than patients with no previous treatment
history. No other individual-level risk factors are associ-
ated with increased or decreased risk of MDR-TB.
Inference for λ in Table 2 suggests that people living

closer to the prison are at a higher risk of MDR-TB. The
spatial range of the spillover effect, described by θ, is es-
timated to be 5.47 km, indicating that the increased risk
extends beyond the prisoner population. The prior and
posterior densities for λ and θ are shown in
Additional file 1: Figures S1 and S2, respectively. Inside
this spillover region, 14.8% of patients have MDR-TB
while outside the spillover region the risk is only 8.2%.
In Fig. 2, we display the predicted probability of
MDR-TB across the region for a patient with previously
treated TB while in Additional file 1: Figure S4, we dis-
play the predictions for a patient without previous TB
treatment. We do not include the spatial random effects
when calculating these probabilities to focus attention
solely on the spillover risk. These figures clearly show
the elevated MDR-TB risk surrounding the prison, the
decay in risk as distance from the prison increases, and
the large difference in risk between patients with and
without a history of previous TB treatment. Posterior
standard deviations for these plots are shown in
Additional file 1: Figures S3 and S4.

Molecular analysis
Through incorporation of the MIRU-VNTR genotyping
data, we also investigate the particular TB strains that
are present within the estimated buffer of increased
MDR-TB risk surrounding the prison. In total, there are
467 non-prisoner TB patients within 5.47 km (posterior

Warren et al. BMC Medicine  (2018) 16:122 Page 5 of 9



mean of θ) of the prison. Of the TB strains observed in
this spillover region, 249 (49%) do not have an exact
MIRU-VNTR match. Nine MDR-TB patients outside the
prison (but within the spillover buffer) share a common
strain with an inmate with MDR-TB. In contrast, out-
side this prison spillover buffer, where there are over
twice as many TB patients (1080), only seven
MDR-TB patients share a common strain with in-
mates with MDR-TB (p = 0.022 from a two-sample
test of proportions). When subsetting to only those
patients with MDR-TB, we find nine out of the 35
MDR-TB patients within the prison spillover buffer
share a common strain with an inmate compared to
seven out of 89 MDR-TB patients outside the prison
spillover buffer (p = 0.008). This provides further evi-
dence to support the idea of potential MDR-TB spill-
over from the prison.
Estimation of the spherical correlation range param-

eter, ϕ, suggests that the residual spatial correlation
has a highly localized impact (0.13 km, 95% credible
interval: 0.04, 0.28 km). Individuals separated by dis-
tances greater than this are essentially independent of
each other with respect to residual MDR-TB risk.
Individuals living within this distance have a more
similar risk of MDR-TB, based on their proximity to
each other alone. In total, 18 out of the m = 1,509
unique spatial location random effects have an upper
95% credible interval larger than zero. From these
significant random effects, we identified eight unique
spatial clusters of at least two patients with increased
residual MDR-TB risk, four of these clusters within

the prison buffer. Full information on each cluster is
presented in Additional file 1: Table S2.
As an example of the role of residual spatial variability

in local MDR-TB risk in this region, in Fig. 3 we display
a cluster of four patients and the predicted risk of
MDR-TB in the area assuming a patient had not been
previously treated for TB (none of these patients had
been previously treated). The posterior standard devia-
tions are presented in Additional file 1: Figure S5. The
elevated risk in this localized area, due to the inclusion
of the spatial random effects, strongly suggests local
transmission. In this cluster, where two of the patients
were co-located, three of them share the same TB geno-
type. Interestingly, the two co-located patients do not
match with respect to TB genotype, a phenomenon we
have also seen in previous household studies of
MDR-TB in Lima [28].
When investigating the robustness of our findings to

the choice of prior distributions for the variance param-
eters, the sensitivity analysis results suggest that estima-
tion of the spatial range of the spillover effect (5.29 vs.
5.47 km) and of the residual spatial correlation (0.11 vs.
0.13 km) were similar. Therefore, the estimated impact
of the prison location and of potential local transmis-
sion on MDR-TB risk in the community remains con-
sistent across the different sets of prior distributions.

Discussion
The availability of spatial and pathogen genetic data
offers new opportunities to describe the transmission dy-
namics of pathogens across spatial scales [29], and these
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Fig. 2 MDR-TB spillover risk predictions. Predicted probability of
MDR-TB due only to the estimated prison spillover effect for a
patient with previous TB treatment in the Gaussian spillover model.
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Fig. 3 MDR-TB residual risk predictions. Predicted probability of
MDR-TB for a patient without previous TB treatment in the Gaussian
spillover model. Note that two MDR-TB patients are co-located. MDR-
TB Multidrug-resistant tuberculosis
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types of data have been combined to gain a better un-
derstanding of how MDR-TB is transmitted within cities
[30] and over larger geographic areas [18, 31], but the
role of prisons in propagating epidemics of MDR-TB in
the community has not previously been confirmed.
In this study, we found that the risk of MDR-TB was

elevated among individuals diagnosed with TB in the
area surrounding the prison in Lima. This spillover
effect dissipated as distance from the prison increased,
and the effect was non-significant at a distance of
approximately 5 km. The individual covariate known to
be most associated with MDR-TB (i.e., previous treat-
ment for TB) remained a significant risk factor, but the
distribution of cases reporting previous treatment did
not explain the spatial concentration of MDR-TB around
the prison location. As there is little reason to believe
that risk of acquired resistance should be related to
proximity to the prison, this spatial pattern suggests that
the majority of MDR-TB cases among previously treated
individuals in this area may be the result of transmitted
resistance. Our approach allowed us to identify foci of
residual risk of MDR-TB, for which interrogation of mo-
lecular epidemiological data revealed several probable
hot spots of MDR-TB transmission with strains that are
were also found within the prison. In summary, our ana-
lysis suggests that those living in the area closest to the
prison experience a higher risk of MDR-TB spillover,
and once such strains appear outside the prison, they
can be transmitted further in the community. Demon-
strating a clear prison spillover effect highlights the need
to intervene in the prison to prevent both internal and
external TB transmission. Figures from the Peruvian
National Penitentiary Institute demonstrate that Sarita
Colonia prison in Callao is overpopulated by 483%. The
prison was designed to have a capacity of 573 inmates
but in October 2016 it had a prison population of 3332
[32]. Daily mixing between the prison population and
the surrounding community occurs because of the flux
of prison staff and visitors, which includes conjugal and
intimate visits, prisoners with permission to leave, and
the continual intake of new inmates and the release of
inmates. These types of movements provide a potential
explanation for how the risk of MDR-TB can extend be-
yond the walls of the prison [33].
Our study has several notable limitations. First, we do

not have data on whether individuals with TB in the
community had previously been imprisoned or had
known exposure to prisoners or ex-prisoners. This
would have been useful in understanding the mechanism
of increased risk experienced by those living closest to
the prison. Second, our analysis is based solely on house-
hold location. As transmission of Mycobacterium tuber-
culosis may well occur outside the home, use of home
location serves at best as a proxy of transmission risk.

Third, we had sufficient data to include 71% of
culture-positive isolates in this analysis, and it is possible
that selection bias could occur if individuals without
bacteriological confirmation of TB or missing drug sus-
ceptibility testing or spatial data were at a systematically
different risk of MDR-TB than those included in the
analysis. Fourth, we have used MIRU-VNTR data to
identify strains that are genetically clustered and thus,
may be related in chains of transmission. While
MIRU-VNTR is an important tool for identifying poten-
tial transmission clusters, whole-genome sequencing can
break up apparent MIRU-VNTR clusters [34] and may
have allowed us to infer transmission events better. [35]
We are hopeful that future work, in which
whole-genome sequencing is combined with spatial
and epidemiological data to pin down the role of spe-
cific institutions in the propagation of TB epidemics,
will inform the targeting of transmission-blocking in-
terventions to settings where they can have the great-
est effect. Finally, it is possible that ecological bias
may be introduced by analyzing individual-level data
using a combination of individual- and city
block-level covariates. Associations could potentially
differ if all covariates were measured on the same
spatial scale.

Conclusions
We leveraged epidemiological, spatial, and pathogen
genetic data to test the hypothesis that high rates of
MDR-TB previously documented within a prison have
led to a spillover risk in the surrounding community.
Using Bayesian hierarchical spatial statistical modeling,
we found strong evidence to support the hypothesis that
the excess risk extends beyond the walls of the prison.
In combination with existing work, our results suggest

that such institutions have potential to amplify epi-
demics and that efforts to control transmission within
institutions can also have important indirect effects on
reducing risk in the surrounding community.
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