
RESEARCH ARTICLE Open Access

Exploring causality in the association
between circulating 25-hydroxyvitamin D
and colorectal cancer risk: a large
Mendelian randomisation study
Yazhou He1,2,3†, Maria Timofeeva1†, Susan M. Farrington1, Peter Vaughan-Shaw1, Victoria Svinti1, Marion Walker1,
Lina Zgaga1,4, Xiangrui Meng3, Xue Li3, Athina Spiliopoulou3, Xia Jiang5,6, Elina Hyppönen7,8, Peter Kraft5,
Douglas P. Kiel9,10,11, The SUNLIGHT consortium, Caroline Hayward12, Archie Campbell13, David Porteous13,
Katarina Vucic14, Iva Kirac15, Masa Filipovic16, Sarah E. Harris17,18, Ian J. Deary17,19, Richard Houlston20,
Ian P. Tomlinson21, Harry Campbell1,3, Evropi Theodoratou1,3* and Malcolm G. Dunlop1*

Abstract

Background: Whilst observational studies establish that lower plasma 25-hydroxyvitamin D (25-OHD) levels are
associated with higher risk of colorectal cancer (CRC), establishing causality has proven challenging. Since vitamin D is
modifiable, these observations have substantial clinical and public health implications. Indeed, many health agencies
already recommend supplemental vitamin D. Here, we explore causality in a large Mendelian randomisation (MR) study
using an improved genetic instrument for circulating 25-OHD.

Methods: We developed a weighted genetic score for circulating 25-OHD using six genetic variants that we recently
reported to be associated with circulating 25-OHD in a large genome-wide association study (GWAS) meta-analysis.
Using this score as instrumental variable in MR analyses, we sought to determine whether circulating 25-OHD is
causally linked with CRC risk. We conducted MR analysis using individual-level data from 10,725 CRC cases and 30,794
controls (Scotland, UK Biobank and Croatia). We then applied estimates from meta-analysis of 11 GWAS of CRC risk
(18,967 cases; 48,168 controls) in a summary statistics MR approach.

Results: The new genetic score for 25-OHD was strongly associated with measured plasma 25-OHD levels in 2821
healthy Scottish controls (P = 1.47 × 10− 11), improving upon previous genetic instruments (F-statistic 46.0 vs. 13.0).
However, individual-level MR revealed no association between 25-OHD score and CRC risk (OR 1.03/unit log-
transformed circulating 25-OHD, 95% CI 0.51–2.07, P = 0.93). Similarly, we found no evidence for a causal relationship
between 25-OHD and CRC risk using summary statistics MR analysis (OR 0.91, 95% CI 0.69–1.19, P = 0.48).

(Continued on next page)

* Correspondence: e.theodoratou@ed.ac.uk; malcolm.dunlop@ed.ac.uk
†Yazhou He and Maria Timofeeva contributed equally to this work.
1Colon Cancer Genetics Group, Medical Research Council Human Genetics
Unit, Medical Research Council Institute of Genetics & Molecular Medicine,
Western General Hospital, The University of Edinburgh, Edinburgh EH4 2XU,
UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

He et al. BMC Medicine  (2018) 16:142 
https://doi.org/10.1186/s12916-018-1119-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-018-1119-2&domain=pdf
http://orcid.org/0000-0002-3033-5851
mailto:e.theodoratou@ed.ac.uk
mailto:malcolm.dunlop@ed.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Despite the scale of this study and employing an improved score capturing more of the genetic
contribution to circulating 25-OHD, we found no evidence for a causal relationship between circulating 25-OHD and
CRC risk. Although the magnitude of effect for vitamin D suggested by observational studies can confidently be
excluded, smaller effects sizes and non-linear relationships remain plausible. Circulating vitamin D may be a CRC
biomarker, but a causal effect on CRC risk remains unproven.
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Background
Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer worldwide and is one of the leading causes of
cancer-specific death [1]. A variety of risk factors have been
identified, including low 25-hydroxyvitamin D (25-OHD)
[2]. 1,25 dihydroxyvitamin D3 or calcitriol, the active
metabolite of 25-OHD, binds to the nuclear vitamin
D receptor and subsequently takes effect by maintain-
ing cellular homeostasis and controlling cell growth
[3, 4]. Postulated mechanisms for the apparent protective
effect of 25-OHD include effects on transcriptional regula-
tion of anticancer target genes involved in proliferation,
apoptosis, differentiation, inflammation, invasion and me-
tastasis [4]. Meta-analysis of prospective observational stud-
ies involving more than one million participants provided
evidence of an inverse association between a 10 ng/mL in-
crement in circulating 25-OHD level and a 26% decreased
CRC risk [5, 6]. Given the high prevalence of vitamin D de-
ficiency worldwide [7], especially for high latitude areas
such as Scotland [8], and the fact that deficiency can be rec-
tified by dietary supplementation, there is compelling ra-
tionale to investigate the contribution of 25-OHD to CRC
incidence in the general population.
The associations between vitamin D and CRC reported

in observational studies could be biased by reverse causal-
ity or confounding factors. Potential confounding factors
include body mass index (BMI) [9], diet low in vitamin D,
or amount of time spent outdoors [10], each of which may
separately influence CRC risk. These could potentially
compromise true benefits of any interventions on circu-
lating 25-OHD level. Although the effect of modifying
25-OHD levels can be verified by traditional rando-
mised controlled trials of vitamin D supplementation,
these would be prohibitively costly and lengthy in dur-
ation. The “VITamin D and OmegA-3 TriaL (VITAL)”
was launched in 2010 to investigate the effect of vita-
min D supplementation on cancer and cardiovascular
disease outcomes [11]. Although 20,000 participants
will be recruited to the trial, it could still be underpow-
ered to detect the potential effect on a single type of
cancer given the relatively low frequency of CRC
occurrence.
Mendelian randomisation (MR) is one of the emerging

approaches to strengthen causal inference based on the

instrumental variable (IV) method [12]. The conceptual
framework of MR is shown in Fig. 1a. A typical MR study
uses genetic variants as the IV, assuming that risk alleles
for a certain phenotype are randomly allocated during
gamete formation [13]. There are some basic assumptions
for a valid IV in MR studies [14]. The first is the relevance
assumption, which means that instrumental genetic vari-
ants should be significantly associated with the exposure;
the second assumption requires no association between
the IV and confounders of the exposure–outcome rela-
tionship. The third is the exclusion restriction assumption,
indicating that these variants should affect the outcome
solely through the exposure. If the MR assumptions are
satisfied then the potential causal effect can be inferred
based on the observed IV–exposure and IV–outcome as-
sociations. Published MR studies so far have not found
support a causal relationship between 25-OHD and CRC
[15–17]. Our group previously performed two MR studies
to investigate the possible causal effects of plasma
25-OHD on CRC risk. We did not detect a significant ef-
fect of 25-OHD on CRC risk using the conventional MR
approach [15]. However, analysis of Bayesian predictor
scores across various hypotheses prioritised causal models
accounting for hidden pleiotropy and confounding over
the reverse causality hypothesis [18]. The implemented
methodology accounted for confounding by unknown
factors and allowed pleiotropic relationships; hence, the
results are not dependent on strong and often unrealistic
assumptions of the classical MR methods.
It is worth noting that, in all previous MR studies, only

four genetic variants (rs2282679, rs12785878, rs6013897,
rs10741657) [19] were used to build the instrument. Re-
cently, with the sample size of genome-wide association
studies (GWAS) accumulating rapidly, two further genetic
loci associated with circulating 25-OHD levels were identi-
fied (rs10745742 and rs8018720) [20]. Simulation studies
found that incorporating more genetic variants into a single
instrument by computing genetic risk scores (GRS) could
improve the instrument strength and accuracy of estima-
tion [21, 22], highlighting the necessity to re-evaluate the
causal effect of 25-OHD on CRC.
Therefore, we designed this MR study to obtain causal

estimates of the association between 25-OHD and CRC
(Fig. 1b). Six genetic variants associated with 25-OHD level

He et al. BMC Medicine  (2018) 16:142 Page 2 of 11



were used as the IV. MR analysis was performed using
both individual level data and two-sample summary
statistics.

Methods
Individual level MR
Studies
Five CRC case–control studies from Scotland, UK and
Croatia totalling 10,725 CRC cases and 30,794 controls
were included in the individual level MR (Additional file 1:
Table S1). The Scottish case–control CRC series consisted
of three studies of a total of 6278 cases and 14,692 controls,
including (1) 1012 cases and 1012 controls from Scotland 1
(COGS study) [23, 24]; (2) 494 cases from the Study of
Colorectal Cancer in Scotland (SOCCS) [25] and 1522
population-based controls without prior history of ma-
lignant tumours from the Lothian Birth Cohorts (LBC)
1921 and 1936 [26]; and (3) 4772 cases and 2221
population-based controls from SOCCS [25] and add-
itional 9937 population controls without prior history
of CRC from the Generation Scotland-Scottish Family

Health Study (GS:SFHS) [27, 28]. The fourth study in-
cluded 3683 cases and 15,642 controls matched by age,
sex, date of blood draw, ethnicity and region of resi-
dence from the UK biobank cohort [29]. Finally, a
case–control CRC study from Croatia consisting of 764
cases and 460 population-based controls was also in-
cluded in the analysis. Details of study genotyping,
quality control procedures and imputations are pre-
sented in Additional file 1 and elsewhere [30, 31]. A
total of 9940 cases and 22,848 controls with genotyping
data were included after extensive quality control pro-
cedures (Additional file 1). Each study was approved by
the respective institutional ethics review board and per-
formed in accordance with the Declaration of Helsinki.

Genetic variants as 25-OHD instruments
We created an IV for 25-OHD using four genetic var-
iants previously shown to be associated with 25-OHD
(rs3755967, rs10741657, rs12785878, rs17216707) [19] and
two new single nucleotide polymorphisms (rs10745742,
rs8018720) identified by our recent SUNLIGHT Consortium

a

b

Fig. 1 a Conceptional framework of Mendelian randomisation (MR). The instrumental variable is based on genome-wide significant single
nucleotide polymorphisms from independent studies of the association between the exposure of interest (serum 25-hydroxyvitamin D (25-OHD)
concentrations) and the outcome (colorectal cancer (CRC)). The effect of an instrumental variable should be independent from the confounding
factors and should affect CRC risk only through exposure. In the presence of a causal relationship, the association between instrumental variable
and CRC would be expected to be proportionate to its association with the serum 25-OHD concentrations, given the relationship between the
serum 25-OHD concentrations and CRC risk. Figure adapted from Timpson et al. [65]. b Basic design of our MR on the causal effect of 25-OHD on
CRC risk. The blue text of outer contour showed individual level MR analysis. β1 is the regression coefficient of instrumental variable (IV) on
exposure (25-OHD level) using controls from the Scotland Colorectal Cancer Study (SOCCS); β2 is the regression coefficient of IV on outcome
(CRC) using SOCCS series, Croatia and UK biobank case control studies. Causal effect is estimated by the ratio of β2 and β1. The red text of inner
contour showed summary statistics MR analysis. Effect sizes of IVs on 25-OHD and CRC are extracted from two GWAS meta-analyses and causal
estimate is derived from an inverse variance-weighted MR analysis
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GWAS meta-analysis [20]. This meta-analysis of GWAS of
serum 25-OHD concentrations included data from
SOCCS. To obtain an unbiased IV that could be ap-
plied in our study population, a meta-analysis of 29
cohorts including 77,354 individuals of European an-
cestry was re-run, excluding the SOCCS samples.
Summary statistics (including beta estimates for al-
leles increasing circulating 25-OHD level, standard
error and P value) of the genetic variants on 25-OHD
were extracted afterwards.

Statistical analysis
We created a weighted GRS for each individual in
SOCCS/GS, UK biobank and Croatia datasets using the
six 25-OHD-associated candidate variants. These vari-
ants were weighted by effect sizes of 25-OHD increasing
alleles from the SUNLIGHT GWAS meta-analysis ex-
cluding SOCCS samples. Unweighted GRS was also gen-
erated based on the counts of alleles associated with
increased level of 25-OHD for each participant.
First, we tested the association between the 25-OHD

GRS and log-transformed 25-OHD levels (nmol/L) in a
sub-set of SOCCS controls (n = 2821) by applying a uni-
variable linear regression model. We also calculated the
F-statistic to evaluate the strength of the genetic instru-
ment, and an F-statistic < 10 was considered as a weak
instrument effect [21]. Second, we examined the associ-
ation between our instrumental GRS of 25-OHD and
common confounders including age, sex, BMI, physical
activity, assessment centre, smoking status and alcohol
consumption based on available data in SOCCS (n = 9746)
and UK biobank (n = 11,382) controls to test the potential
violation of the second MR assumption. We also searched
the NHGRI-EBI GWAS Catalogue (https://www.ebi.a-
c.uk/gwas/ accessed in February 2018) to identify any re-
ported associations between the six variants and
potential confounders. If the second MR assumption
was violated in one of the studies, we performed sen-
sitivity analysis by excluding the corresponding study.
We also applied multivariable linear regression
models adjusting for age, sex and BMI to obtain the
IV–exposure association estimates based on availabil-
ity of each dataset. Next, the association between GRS
and CRC risk was assessed by a logistic regression model in
the three Scottish case–control series (Scotland1, SOCCS/
GS, SOCCS/LBC), Croatia and UK biobank datasets,
adjusting for age, sex and BMI (based on data availabil-
ity). Using the coefficient ratio method proposed by
Wald [32], we measured the causal effect by calculating
the ratio of the IV regression coefficient from the IV–
outcome association analysis and the IV regression co-
efficient from the IV–exposure association, and then
estimated the standard error based on the Taylor ex-
pansion [33, 34].

Estimates from these five datasets were combined by
using the inverse variance meta-analysis under a random
effects model. The observed P value < 0.10 for the χ2 Q test
indicated no significant heterogeneity among included
datasets. Considering potential diverse aetiology of tu-
mours in different anatomical locations, we also per-
formed stratified MR analyses in patients with tumours
in proximal, distal colon and rectum using available
individual-level data.

Summary statistics MR
Studies
We investigated the relationship between the IV for
25-OHD and CRC using summary data from six previ-
ously reported GWAS of CRC [30, 31]. Briefly, these
GWAS included individuals of European ancestry from the
following studies: CCFR1, CCFR2, COIN, FINLAND, UK1
and VQ58 [35–37] (details in Additional file 1: Table S1).
Together with the Scottish case–control series, Croatia
and UK Biobank studies we included 18,967 cases
and 48,168 controls across 11 individual GWASs
(Additional file 1: Table S1). Comprehensive details
on the cases and controls are available in previously
published work [30, 31, 35–37]. After standard quality
control procedures, 17,716 cases and 40,095 control
individuals were included in the analysis. All studies
were approved by their respective institutional review
boards and conducted with appropriate ethical criteria
in each country and in accordance with the Declar-
ation of Helsinki.

Statistical analysis
Effects of the six genetic variants on 25-OHD (25-OHD
increasing alleles) were extracted from the SUNLIGHT
GWAS meta-analysis and effects of these variants on CRC
risk were extracted from the CRC GWAS meta-analysis re-
sults of 11 case–control studies (Additional file 1: Table S1,
Table S6). We also checked if any of the known CRC risk
variants were in linkage disequilibrium (r2 > 0.01) with
the 25-OHD associated variants in the CRC GWAS
meta-analysis results. We applied a range of MR
methods using summary genetics data, namely an in-
verse variance-weighted (IVW) average of associations
for IVs [38], and a median-based method [39]. Egger
MR [40] was conducted to explore the potential bias
introduced by pleiotropy.
IVW MR combines causal effects of candidate variants

estimated following the IVW method as proposed by
Burgess et al. [38]. As shown by the formula below,
Xk refers to the effect size of variant k on the expos-
ure, Yk represents the effect size of the same variant
on the outcome, and σYk is the standard error of Yk.
In addition, to evaluate potential heterogeneity among
causal effects of different variants, the χ2 Q test was
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employed, and a P value of less than 0.10 was regarded as
significant heterogeneity.
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Considering that unmeasured pleiotropy could lead to
violation of the exclusion restriction assumption and bias
the MR findings, we employed the MR-Egger regression
method that aims to identify and adjust for unbalanced
pleiotropy. Additionally, the MR-Egger approach can pro-
vide unbiased and minimally biased estimates even in the
presence of no causal association and substantial direc-
tional pleiotropy [40]. A significant difference of an inter-
cept from zero (P < 0.05) suggests existence of unbalanced
pleiotropy.
To further evaluate the robustness of possible causal

effect when some of the genetic variants in the analysis
are not valid IVs and IV assumptions are violated, we
also employed median-based methods to derive the
causal estimates [39]. As a sensitivity analysis, causal es-
timates from IVW and MR-Egger were calculated using
robust regression in addition to standard linear regression,
and penalization of weights of each variant was also ap-
plied for IVW, MR-Egger and median-based estimates
[41]. A P value of less than 0.05 was considered as statisti-
cally significant for causal estimates for our MR. In
addition, given these six variants are located in multiple
genes with diverse function, which could introduce poten-
tial pleiotropy, we also conducted a sensitivity analysis
with different combinations of variants, starting with
rs10741657 plus rs12785878 (in CYP2R1 and DHCR7
genes affecting 25-OHD synthesis) and sequentially add-
ing rs17216707, rs10745742, rs8018720 and rs3755967.

Power estimation
We estimated the power of our study according to
the method provided by Brion et al. [42]. The six
25-OHD-related variants explained approximately
2.84% of 25-OHD variation [20]. We fixed the type I
error as α < 0.05 and employed a range of effect esti-
mates from odds ratio (OR) 0.6 to 0.98 per standard
deviation increased 25-OHD level. Assuming true
causal effect of vitamin D is similar to the effect ob-
served in the SOCCS study (OR 0.83 per standard de-
viation of increased circulating 25-OHD) we would
have a power 0.72 for the individual level approach
using 9940 CRC cases and 22,848 controls from the
UK biobank, Croatia and Scottish CRC case–control

series. The study had sufficient power (80%) to detect
the causal effects of a 19% or larger decrease in CRC risk
per standard deviation increase of 25-OHD. The power
for the summary level approach reached 0.80 for a causal
effect larger than 14.3% decreased CRC risk per standard
deviation increase of 25-OHD. Power estimation for a
range of causal effects as well as proportions of 25-OHD
variation explained by the six genetic variants is sum-
marised in Additional file 1: Table S3.
All statistical analyses were performed using PLINK

1.90 and R (version 3.3.0) package ‘MendelianRando-
mization’ [43].

Results
We tested the MR assumptions using SOCCS and UK
biobank individual level data. The MR relevance as-
sumption was tested in SOCCS controls (n = 2821) with
available circulating 25-OHD levels. Both weighted and
unweighted GRS were significantly associated with the
log-transformed 25-OHD levels in a univariable linear
regression model (weighted GRS: P = 1.47 × 10− 11, un-
weighted GRS: P = 8.47 × 10− 9) and after adjustment for
age, sex and BMI (weighted GRS: P = 1.37 × 10− 11, un-
weighted GRS: P = 5.72 × 10− 10). We calculated the
F-statistic to evaluate the strength of the genetic instru-
ment [21]. The linear regression showed an F-statistic of
46.0 for weighted GRS and 33.7 for unweighted GRS,
suggesting the absence of a weak instrument effect
(F > 10). The association between the instrument and pos-
sible confounders was tested in SOCCS and UK biobank
controls. The genetic instrument of six variants on
25-OHD was not significantly associated with any of the
common cofounders including age, sex, height, weight,
BMI, physical activity, smoking status, alcohol consump-
tion and assessment centre (P > 0.05, Additional file 1:
Table S2). By searching the GWAS catalogue, we identi-
fied no significant association between any of the six vari-
ants and common confounders either. None of the known
CRC variants were in linkage disequilibrium (r2 > 0.01)
with the six 25-OHD variants.
No direct association was observed between the

weighted or unweighted GRS and CRC risk in SOCCS,
Croatia or UK biobank datasets (Table 1). Detailed re-
sults of individual level MR analysis for each dataset
are summarised in Table 2. Both univariable and mul-
tivariable models adjusted for age, sex and BMI, when
appropriate, showed no causal effects of 25-OHD on
CRC risk in Scotland 1, SOCCS/GS, SOCCS/LBC,
Croatia and UK biobank case–control studies. Overall, the
result of individual level MR analysis under a multivariable
model suggested no significant causal effect of 25-OHD
concentration on CRC risk using the weighted GRS
(OR 1.03 per unit increased log-transformed 25-OHD,
95% C 0.51–2.07, P = 0.931). No significant heterogeneity
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was observed among each dataset (Phet = 0.227). Similarly,
we did not find a statistically significant causal effect when
an unweighted GRS was employed as the IV (OR 1.12,
95% CI 0.51–2.45, P = 0.785). The results of stratified ana-
lysis did not support a significant causal effect of 25-OHD
on risk for proximal, distal or rectal tumours (detailed re-
sults in Additional file 1: Table S5).
As shown in Fig. 2, for the summary statistics IVW

MR, no statistically significant causal effect of 25-OHD
on CRC risk was identified either (OR 0.91 per unit
increased log-transformed 25-OHD, 95% CI 0.69–1.19,
P = 0.475). MR-Egger regression did not identify evi-
dence of significant horizontal pleiotropy (P = 0.657) and
the MR-Egger analysis did not observe any statistically
significant causal effect (OR 0.83, 95% CI 0.51–1.34,
P = 0.452). In addition, no significant heterogeneity
was detected among the causal estimates of the six vari-
ants (Phet = 0.547). Effects of each single variant on both
25-OHD and CRC are presented in Table 3. Estimates de-
rived from the median-based methods did not show a

statistically significant causal effect (simple median
method: OR 0.80, 95% CI 0.49–1.30, P = 0.375). Detailed
results using standard linear regression, robust regression
and penalisation are summarised in Table 4. Sensitivity
analysis using different combinations of variants did not
identify any significant causal effects either (detailed re-
sults presented in Additional file 1: Table S4).

Discussion
In the largest MR study to date, we employed a new IV
comprising a genetic score that captures more of the
genetic contribution to circulating 25-OHD than has
ever been possible before, linked to a large meta-analysis
of GWAS for CRC risk in well-matched European
populations with similar ambient exposure to vitamin
D-making UVB sunlight. We aimed to determine whether
the relationship between 25-OHD and CRC risk was
causal. We employed several MR methods, including
individual level MR analysis, summary level IVW,
Egger MR and median-based MR. We used six genetic

Table 1 Two-stage regression coefficients for Mendelian randomisation analysis using genetic risk score in individual level data

GRS-25OHD coefficient (95% CI)b GRS-CRC coefficient (95% CI)c

SOCCS controls Scotland 1 SOCCS/GS Croatia SOCCS/LBC UK biobank

Univariable model

Weighted
score

0.055 (0.039 to 0.071) 0.036
(−0.055 to 0.128)

− 0.009
(− 0.045 to 0.026)

0.072
(− 0.048 to 0.191)

− 0.029
(− 0.133 to 0.076)

− 0.022
(− 0.061 to 0.017)

Unweighted
score

0.046 (0.031 to 0.062) 0.037
(−0.055 to 0.128)

− 0.005
(− 0.041 to 0.030)

0.110
(− 0.010 to 0.230)

0.001
(− 0.104 to 0.106)

− 0.008
(− 0.047 to 0.031)

Multivariable modela

Weighted
score

0.057 (0.040 to 0.073) 0.109
(−0.011 to 0.230)

− 0.026
(− 0.081 to 0.029)

0.074
(− 0.047 to 0.194)

− 0.031
(− 0.136 to 0.074)

− 0.024
(− 0.047 to 0.031)

Unweighted
score

0.051 (0035 to 0.068) 0.080
(−0.038 to 0.197)

− 0.022
(− 0.077 to 0.032)

0.114
(− 0.007 to 0.235)

− 0.003
(− 0.108 to 0.102)

− 0.011
(− 0.050 to 0.029)

aMultivariable regression model adjusted by age, sex and BMI for Scotland 1, SOCCS/GS and UK biobank, age and sex for Croatia, sex for LBC.MD
bChange in log-transformed 25-OHD (nmol/L) per unit increase in GRS
cChange in logit CRC risk per unit increase in GRS
25-OHD 25-hydroxyvitamin D, CI confidence interval, CRC colorectal cancer, GRS genetic risk score, LBC Lothian Birth Cohort, SOCCS Scotland Colorectal
Cancer Study

Table 2 Main results of Mendelian randomisation analysis using individual level data

Cases/controls Causal estimate (odds ratio)b (95% CI) Overall
estimatec

P value Phet
d

Scotland 1 SOCCS/GS Croatia SOCCS/LBC UK biobank

932/942 4551/8804 689/441 461/1444 3301/11382

Univariable model

Weighted score 1.92 (0.36–10.27) 0.84 (0.44–1.62) 3.69 (0.41–33.34) 0.59 (0.09–3.99) 0.67 (0.33–1.38) 0.85 (0.55–1.33) 0.481 0.531

Unweighted score 2.20 (0.30–16.19) 0.89 (0.41–1.93) 10.71 (0.71–161.41) 1.02 (0.11–9.84) 0.85 (0.36–1.96) 1.03 (0.61–1.73) 0.920 0.440

Multivariable modela

Weighted score 6.85 (0.77–60.81) 0.63 (0.24–1.67) 3.82 (0.41–35.23) 0.57 (0.08–3.87) 0.87 (0.44–1.73) 1.03 (0.51–2.07) 0.931 0.227

Unweighted score 4.70 (0.46–48.41) 0.65 (0.22–1.88) 11.21 (0.76–164.33) 0.93 (0.10–8.66) 0.81 (0.38–1.75) 1.12 (0.51–2.45) 0.785 0.222
aMultivariable regression model adjusted by age, sex and BMI for Scotland 1, SOCCS/GS and UK biobank, age and sex for Croatia, sex for LBC.MD
bChange in CRC risk per unit log-transformed 25-OHD (nmol/L)
cOverall estimates were obtained by meta-analyses under random-effect model
dPhet, P values of χ2 Q test for heterogeneity
25-OHD 25-hydroxyvitamin D, CI confidence interval, CRC colorectal cancer, GRS genetic risk score, LBC Lothian Birth Cohort, SOCCS Scotland Colorectal Cancer Study
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variants (rs3755967, rs12785878, rs17216707, rs10741657,
rs10745742, rs8018720) associated with 25-OHD serum
levels as IVs [20]. However, none of the implemented ap-
proaches supported a causal association between lower
plasma 25-OHD and elevated CRC risk.
Previous retrospective and prospective observational

studies establish beyond all reasonable doubt that there
is an association between lower circulating 25-OHD
levels and elevated CRC risk [5, 6]. The issue is whether
this is a causal relationship. However, randomised con-
trolled trials have failed to demonstrate beneficial effects
of vitamin D supplementation on CRC or colorectal aden-
oma recurrence as an intermediate endpoint. For instance,
the Women’s Health Initiative trial did not show any
effects of 1000 mg of elemental calcium and 400 IU of
vitamin D3 supplementation on CRC incidence among
postmenopausal women [44]. Similarly, daily supplemen-
tation with vitamin D3 (1000 IU), calcium (1200 mg) or
both after removal of colorectal adenomas did not reduce
the risk of recurrent colorectal adenomas [45]. Albeit
questioning the potential causal role of 25-OHD in
the development of CRC, these trials are widely

criticised for short follow-up or lacking proof for ef-
fective 25-OHD modification (due to low dose of supple-
mentation) [46–48]. More recently, in human studies, it
has been shown that functional genetic variants in the
vitamin D receptor may also influence any protective re-
sponse to vitamin D in preventing adenomas, which
merits further stratified investigation of the possible effect
[49]. Similarly, experimental studies using rodent models
of colon cancer treated with high dietary vitamin D were
inconsistent in their conclusions. In particular, a causal re-
lationship between high dietary vitamin D and low colon
cancer risk was supported by studies using a mouse model
of bacteria-driven colitis and colon cancer [50], and in
mice fed with new Western-style diet [51], but not in a rat
model of familiar colon cancer [52].
A randomised trial in average risk populations of suffi-

cient size and duration to establish definitively whether
or not vitamin D supplementation prevents CRC as the
primary endpoint seems unlikely to ever be feasible.
Hence, MR methods offer an alternative approach that
might provide clarity on whether 25-OHD is causally as-
sociated with CRC risk. There is a pressing need for

Fig. 2 Association of 25-hydroxyvitamin D (25-OHD) affecting genetic variants with log transformed 25-OHD concentration and colorectal cancer
risk. The slope of the red line is the causal estimate derived from inverse variance-weighted (IVW) Mendelian randomisation and slope of the blue
dash line represents the 95% confidence interval of IVW estimate

Table 3 Summary of genetic variants used as instrumental variables in summary statistics approach

ID Gene Effect allele Chromosome Beta (25-OHD) Se (25-OHD) Beta (CRC) Se (CRC)

rs10741657 CYP2R1 A 11 0.0312 0.0022 0.0162 0.0135

rs10745742 AMDHD1 T 12 0.0167 0.0022 −0.0049 0.0138

rs12785878 NADSYN1/ DHCR7 T 11 0.0361 0.0022 −0.0097 0.016

rs17216707 CYP24A1 T 20 0.0262 0.0027 0.0138 0.0173

rs3755967 GC C 4 0.0893 0.0023 −0.0154 0.0148

rs8018720 SEC23A G 14 0.0164 0.0029 −0.0163 0.0176

Beta regression coefficients of GWAS meta-analysis, se standard error, CRC colorectal cancer
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designing and investing in future trials on the effects of
vitamin D in high-risk population subgroups.
Our previous MR study did not detect a statistically

significant causal effect of 25-OHD on CRC [15]. An-
other recent MR study with 11,488 CRC cases did not
show a causal relationship between circulating vitamin
D level and CRC risk [17]. However, the conclusions
might have been limited by lower statistical power. In-
sufficient power has been a major shortcoming of MR
studies, because genetic variants usually explain only a
very small proportion of the exposure variation on the
liability scale. Those four variants could only explain
3.6% to 5.2% [53, 54] of variance on 25-OHD, thus lead-
ing to potentially low statistical power. Our previous
study included 2001 CRC cases and 2237 controls, but
only reached a power of 0.35 to detect 25% decreased
risk per standard deviation increase in 25-OHD [15].
We recently reported the largest ever GWAS on circu-
lating 25-OHD concentrations in which we identified
two additional genetic loci contributing to the genetic
architecture of 25-OHD [20]. Using these six variants,
we developed a stronger instrument compared with the
previous four-variant instrument (F-statistic 46.0 vs. 13.0
in SOCCS controls) [15]. However, the overall heritabil-
ity calculated using linkage disequilibrium score regres-
sion analysis [20] was modest, with 2.84% out of 7.5%
overall heritability explained by the identified GWAS
variants. Although the addition of new GWAS variants
provided only limited improvement in the strength of
the IV, overall statistical power was substantially im-
proved in our current 25-OHD–CRC MR analysis. With
data from the largest GWAS studies on 25-OHD and
CRC, as well as more individual CRC cases involved in
this MR study, we have a power of 0.80 at the α level of
0.05 to identify a 19% decreased CRC risk per standard

deviation increase in 25-OHD for the individual level ap-
proach using 9940 CRC cases and 22,848 controls from
the UK biobank CRC case–control dataset, Croatia and
Scottish CRC case–control series, and a power of 0.80 to
identify a 14.3% decreased CRC risk for the summary
level approaches using 17,716 cases and 40,095 controls
across 11 individual GWASs.
The validity of MR estimates of causal effects requires

that several assumptions be held. First, for the relevance
assumption, we only included the strongest independent
variants identified by the largest GWAS so they were all
robustly associated with the exposure. Second, none of
the genetic variants used in our analysis were cited by
the NHGRI-EBI Catalogue of published GWAS as
associated with known CRC risk confounders (such as
height, BMI, alcohol consumption, smoking, type II dia-
betes, inflammatory bowel disease, adenomas) [55]. Fur-
thermore, our genetic instrument was not associated
with age, sex, BMI, smoking status, alcohol consump-
tion, physical activity and assessment centre, suggesting
no effects of violated IV second assumption due to
tested confounders on final study conclusion. However,
we cannot rule out the possibility of association between
our IV and an unknown and/or unmeasured confound-
ing factor. Finally, to assess violations of the exclusion
restriction assumption or ‘no pleiotropy’, we employed a
range of methods known to robustly account for hori-
zontal pleiotropy, including MR-Egger and a weighted
median approach. All of the methods showed similar re-
sults and MR-Egger intercept indicated no evidence of
pleiotropic effects, suggesting robust null findings.
Our study had sufficient power and an appropriate de-

sign to formally address the hypothesis of a causal rela-
tionship between low circulating vitamin D and CRC
risk. We also used a range of various MR approaches.
Another strength of our study was the availability of col-
lected information on known confounding factors such
as height, weight, BMI, age and sex, which allowed test-
ing the MR assumptions of independent associations be-
tween IV and confounders. However, there were some
limitations too. Firstly, due to the low proportion of
25-OHD variance (2.84%) explained by the genetic vari-
ants and relatively small sample size, our individual level
data analysis did not reach the desired power (< 0.80) as-
suming true causal effects of 25OHD on CRC risk was
similar to the effect observed in the observational
SOCCS case–control study (OR 0.83). The study had
sufficient power to identify a causal effect larger than
21.7% decreased CRC risk per 25-OHD standard devi-
ation. Although the summary statistics approach included
a larger sample size, we only had a power of 0.49 if the
true causal effect was less than 10% decreased CRC risk
per 25-OHD standard deviation. Similarly, both ap-
proaches were underpowered if the real proportion of

Table 4 Main results of Mendelian randomisation analysis in 18,967
colorectal cancer cases and 48,168 controls using summary statistic
approach

Methods Causal estimates (95% CI)a P value Pint

IVW 0.91 (0.69–1.19) 0.475 NA

Robust IVW 0.90 (0.74–1.09) 0.318 NA

Penalised IVW 0.91 (0.69–1.19) 0.475 NA

MR-Egger 0.83 (0.51–1.34) 0.452 0.657

Robust MR-Egger 0.83 (0.67–1.03) 0.09 0.61

Penalised MR-Egger 0.83 (0.51–1.34) 0.452 0.657

Simple median 0.80 (0.49–1.30) 0.375 NA

Weighted median 0.84 (0.62–1.15) 0.278 NA

Penalised weighted median 0.84 (0.62–1.15) 0.278 NA
aChange in colorectal cancer risk per unit log-transformed 25-hydroxyvitamin
D (nmol/L)
CI confidence interval, IVW inverse variance weighted, MR Mendelian
randomisation, NA not available, Pint P value of Egger regression test on
the intercept
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25-OHD variance explained by the IV was 2% and
below. Secondly, for individual level analysis, circulating
25-OHD levels from the SOCCS dataset were measured
in the Scottish population, which manifested a signifi-
cantly lower average level compared with other European
populations [8]; this could possibly weaken the strength of
our genetic instrument. A weak IV is an issue for the sum-
mary two-step MR approach too. The MR estimates are
known to be biased towards the null in the presence of a
weak IV (F statistics < 5) [56, 57]. This is similar to regres-
sion dilution bias in an observational study due to
non-differential measurement errors. However, given the
strength of the IV (F-statistic 46.0) used in the present
analysis and the large sample size in the summary level
approach, the bias towards the null is unlikely to affect
our results. We also cannot exclude the possibility of col-
lider bias due to the non-representative selection of partic-
ipants into the study cohorts. Selection bias is present to
some degree in all epidemiological studies. Evidence of a
‘healthy volunteer’ selection bias has been described for
the UK biobank [58, 59]. The collider bias can lead to an
association between the IV and the outcome in the ab-
sence of a causal effect as well as to underestimation of
real causal effects in some cases [60]. It seems, though,
that in most cases collider bias effect is smaller than plei-
otropy or population stratification bias [60]. Finally, as in
many previous MR studies, the current paper is based on
the assumption of a linear effect between CRC risk and
25-OHD levels. Indeed, two recent studies on CRC have
shown a linear relationship between 25-OHD and CRC
[61, 62]. In particular, results from a recent dose–response
meta-analysis of observational studies [61] as well as the
analysis of the EPIC study [62] support a linear relation-
ship between 25-OHD and CRC. Nevertheless, it is still
possible that the assumption of linearity may not hold
true. There are some recently suggested IV methods that
can test non-linear exposure–outcome effects, but the
methods are not fully developed yet [63, 64]. Furthermore,
these approaches require access to individual level
data, which is a limiting factor for many MR studies
including ours. Finally, although application of a linear IV
in the case of a non-linear relationship between the expos-
ure and outcome could not give any insight into the
shape of the relationship, it is still possible to provide
population-averaged causal effects [64].

Conclusions
In conclusion, this MR study provides further evidence
that genetically determined lower circulating levels of
25-OHD are unlikely to have a causal effect on CRC risk
with strength on the order of the effects previously re-
ported in observational studies. Observed associations
may be due to confounders and reverse causation, al-
though a very small causal effect of 25-OHD on CRC

risk cannot be ruled out. Future research might be best
focused on understanding the mechanisms of the rela-
tionship between CRC and circulating 25-OHD.
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