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Abstract

Background: Personalized medicine is the tailoring of treatment to the individual characteristics of patients. Once a
treatment has been tested in a clinical trial and its effect overall quantified, it would be of great value to be able to
use the baseline patients’ characteristics to identify patients with larger/lower benefits from treatment, for a more
personalized approach to therapy.

Methods: We show here a previously published statistical method, aimed at identifying patients’ profiles associated
to larger treatment benefits applied to three identical randomized clinical trials in multiple sclerosis, testing
laquinimod vs placebo (ALLEGRO, BRAVO, and CONCERTO). We identified on the ALLEGRO patients’ specific linear
combinations of baseline variables, predicting heterogeneous response to treatment on disability progression. We
choose the best score on the BRAVO, based on its ability to identify responders to treatment in this dataset. We
finally got an external validation on the CONCERTO, testing on this new dataset the performance of the score in
defining responders and non-responders.

Results: The best response score defined on the ALLEGRO and the BRAVO was a linear combination of age, sex,
previous relapses, brain volume, and MRI lesion activity. Splitting patients into responders and non-responders
according to the score distribution, in the ALLEGRO, the hazard ratio (HR) for disability progression of laquinimod
vs placebo was 0.38 for responders, HR = 1.31 for non-responders (interaction p = 0.0007). In the BRAVO, we had
similar results: HR = 0.40 for responders and HR = 1.24 for non-responders (interaction p = 0.006). These findings
were successfully replicated in the CONCERTO study, with HR = 0.44 for responders and HR=1.08 for non-
responders (interaction p = 0.033).

Conclusions: This study demonstrates the possibility to refine and personalize the treatment effect estimated in
randomized studies by using the baseline demographic and clinical characteristics of the included patients. The
method can be applied to any randomized trial in any medical condition to create a treatment-specific score
associated to different levels of response to the treatment tested in the trial. This is an easy and affordable
method toward therapy personalization, indicating patient profiles related to a larger benefit from a specific drug,
which may have implications for taking clinical decisions in everyday clinical practice.
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Introduction
The results of clinical trials comparing a new treatment
with a control via a randomized procedure are based on
an overall summary measure over the whole population
enrolled. Assessing the individual patient response to a
new treatment is not possible, since each study subject is
assigned to receive either the new treatment or the con-
trol, but not both. That is, the treatment effect is not ob-
servable at an individual level. The treatment efficacy is
expressed by a single number (the treatment effect size)
that is assumed to apply to each treated patient, but this
treatment effect can vary according to specific character-
istics of the patients enrolled. The aim of personalized
medicine is the tailoring of medical treatment to the indi-
vidual characteristics of each patient in order to optimize
individuals’ outcomes. The key issue for personalized
medicine is finding the criteria for an early identification
of patients who can be responders and non-responders to
each therapy. In this study, we present a powerful statis-
tical modeling approach previously developed by Zhao et
al. [1], aimed at identifying subgroups of patients with the
largest benefit from a therapy tested in a randomized clin-
ical trial, by a multivariate post hoc analysis of baseline pa-
tients’ characteristics.
The standard analytical approach to characterize

patients with the largest benefits from a treatment is
based on post hoc subgroup analyses, which tests the
treatment effect on one or more dichotomized baseline
variables. This procedure, however, may not be efficient,
especially when the number of baseline variables is large.
Further, findings from post hoc subgroup analyses need
to be validated in independent studies.
Various novel quantitative methods have been proposed

to deal with the identification of factors associated to
heterogeneous treatment effects, both in cases of single
covariates [2–5] and in those of multiple covariates [6]. In
2013, Zhao et al. [1] proposed a simple modeling
approach to build a continuous score made up of multiple
baseline covariates from a randomized clinical trial to effi-
ciently identify patients with different levels of treatment
benefit. This approach has some advantages: it is very
simple from the computational point of view since it is
based on the difference between two standard multivariate
prognostic models (on the control and on the experimen-
tal arm); it generates a linear score made of baseline
variables, which can be calculated in a post hoc analysis
with no additional costs; when large clinical trials, or, even
better, multiple trials testing the same drug are available, it
is possible to replicate the results to validate them. The
method’s original application was to improve enrichment
strategies for future randomized controlled trials. The aim
of this paper is to present the application of such a meth-
odology to build a treatment-specific algorithm for poten-
tial use in making treatment decisions in clinical practice.

We used here, as a working example, three large cli-
nical trials in multiple sclerosis (MS) who failed to bring
the tested drug to approval. This is an ideal scenario,
since having three identical trials allows for a rigorous
testing–validation–external validation procedure. The
approach proposed here can be easily extended to the
post hoc analysis of any trial in any medical field. This
methodology, without additional cost beyond that of the
trials themselves, will indicate the characteristics of indi-
vidual subjects with higher/lower benefits from any
specific treatment, providing patients and clinicians with
insights into personalized treatment options.

Methods
Background
We used for the present analysis three large randomized
clinical trials in relapsing–remitting (RR) MS that tested
the efficacy of laquinimod vs placebo. Laquinimod is an
orally available carboxamide derivative developed for
RRMS. Its mechanism of action may comprise immuno-
modulatory effects on T cells, monocytes, and dendritic
cells as well as neuroprotective effects with prominent
actions on astrocytes. Laquinimod was tested in phase II
and III clinical trials in RRMS at different dosages ini-
tially ranging from 0.1 to 0.6 mg/day. The compound
was well tolerated, yet the dosages tested only led to
moderate effects on the reduction of relapse rates as a pri-
mary study endpoint in two phase III trials (ALLEGRO
[7] and BRAVO [8]). In contrast, significant effects on
brain volume and disease progression were observed. The
Committee for Medicinal Products for Human Use
(CHMP) refused marketing authorization for RRMS based
on the assessment of the risk–benefit ratio with regard to
data from mechanistic and animal studies. A third clinical
trial (CONCERTO [9]) was run with disability progression
as the primary endpoint. The trial was negative on this
endpoint, and the laquinimod program for RRMS was not
continued. The analysis presented here is therefore
focused on showing the power of the methodology to
identify responders to a therapy, taking advantage from
the ideal setting of three large clinical trials, and showing
that even a drug whose efficacy was not confirmed on the
overall population can give large benefits on a specific
subgroup of patients.

Patients and study design
This is a post hoc analysis of three randomized cli-
nical trials, the ALLEGRO, BRAVO, and CONCERTO
studies (ClinicalTrials.gov identifiers: NCT00509145,
NCT00605215, and NCT01707992, respectively). The
study design and inclusion/exclusion criteria of the
trials were the same for the three studies and have
been described elsewhere [7–9]. Briefly, eligibility cri-
teria included age 18–55 years, diagnosis of RRMS
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(revised McDonald criteria [10]), Expanded Disability
Status Scale (EDSS) scores of 0–5.5, and presence of
relapse activity in the previous 12–24 months.

Primary endpoint
The primary endpoint of this analysis is the disability
progression as defined in the three trials. A progres-
sion event was defined as 1.0 point increase in the
EDSS score if baseline score was between 0 and 5.0, or
a 0.5 point increase if baseline score was 5.5, sustained
for 3 months.

Statistical analysis
According to the accepted methodology of building and
validating a prediction rule, a training set (model cre-
ation), a validation set (model performance evaluation
and refinement toward finalization), and an external
validation set not utilized in the model creation (final
model validation) are needed [11].
Therefore, in this study, the model predicting response

to therapy was developed in these three steps:

1. A set of scores was created on the training set (trial
1 = ALLEGRO)

2. The best score was chosen according to the
performance on the validation set (trial 2 = BRAVO)

3. The score was externally validated on the third
independent validation set (trial 3 = CONCERTO)

Building the score on the training set
The score building followed the modeling approach
described by Zhao et al. [1].
For each subject i, we can observe the four values (Ti,

Yi, Ai, Zi), where Ti is the time to disability progression,
Yi is the progression event (yes/no), Ai is the treatment
arm (here a binary variable: PL = placebo and AT = active
treatment), and Zi is the covariate vector (Z1i, Z2i,...,Zpi)
made of the values of all the baseline characteristics. By
fitting two separate Cox models one for each arm, we
obtain the following models:

log hPL tð Þð Þ ¼ log h0PL tð Þð Þ þ β1PL∙Z1 þ β2PL∙Z2 þ⋯þ βpPL∙Zp

� �

log hAT tð Þð Þ ¼ log h0AT tð Þð Þ þ β1AT∙Z1 þ β2AT∙Z2 þ⋯þ βpAT∙Zp

� �

where h(t) is the hazard function.
Assuming a common baseline hazard function h0(t) =

h0AT(t) = h0PL(t), due to the randomized nature of the
two groups, it is possible to calculate a difference score:

D Zð Þ ¼ log HRð Þ ¼ β1AT−β1PLð Þ∙Z1 þ β2AT−β2PLð Þ∙Z2

þ⋯þ βpAT−βpPL
� �

∙Zp

The difference score D(Z) is the patient-specific score
(Z representing the set of patient-specific covariates),

predicting the size of treatment effect according to his/
her profile.
We selected the baseline variables collected in all the

three trials to build the response score, as:

– Age (continuous OR in 3 groups with cut-offs: < 20,
20–50, 50+)

– Disease duration (continuous, log transformed)
– Sex (binary)
– EDSS (continuous OR binary with cut-off 4)
– Relapses in the previous year (continuous)
– T2 lesion volume (continuous, log transformed)
– T1 lesion volume (continuous, log transformed)
– Normalized brain volume (NBV) (continuous)
– Presence of gadolinium-enhancing (Gd+) lesions

(binary)

The model building described so far was detailed in
the Zhao et al. [1] paper. We expanded the proposed
methodology adding a strategy for the best model selec-
tion, based on an unsupervised approach. We generated
all the possible combinations of the 9 baseline variables,
building 511 models (29 − 1) on the placebo and on the
treated group, according to the procedure described
above. This number was multiplied by 4 considering the
different coding of age and EDSS, for a total number of
2044 response scores.
Then, we ranked these scorej (j = 1,…,2044) for their

ability to identify patients with heterogeneous response
to treatment by ranking the p values of the treatment by
scorei interaction in Cox models including treatment,
scorej, and treatment by scorej interaction. We selected
all the scores giving a p value for interaction with treat-
ment < 0.05; this cut-off was arbitrarily defined to screen
the scores. This procedure indicated a first set of candi-
date response models on the training set.

Analysis on the validation set
The n models with a p value for interaction < 0.05
on the training set were selected and tested on the
validation set. The models were ranked in ascending
order according to the p values for treatment by
score interaction on the validation set. The first five
models (that is, the model with rank = 1 to 5) on the
validation set were selected as the candidate models
to predict response to therapy. To choose one model
among these five scores, we merged the training and
the validation set, re-estimating the five models’ co-
efficients. The score with the lower p value for treat-
ment by score interaction on the merged dataset was
chosen as the final model. This procedure is based
on the performances on the validation set of the
models defined on the training set; the final model
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will be the one among the best 5 on the validation
set with the best performance on the integrated
training–validation set. To evaluate the consistency
of the model choice, the area under the AD(q) curve
[1] was calculated.
Zhao et al. [1] defined the AD(c) curve as the curve

reporting the average treatment effect (that is the
laquinimod vs placebo hazard ratio (HR)) in the sub-
group of patients with difference score D(Z) ≤ c, where
c represents the response score values ranked in
ascending order [1]. In other words, the AD(c) curve
reports the treatment effect in subgroups of patients
with score ≤ c, for each c. To compare two different
scoring systems D1 and D2, the AD(c) curve must be
transformed to the AD(q) curve, where q represents
the proportion of patients with score ≤ c [1]. The area
under the AD(q) curve would be equal to the overall
HR in case of a perfectly uniform treatment effect in
every subgroup of patients (defined as the q% of the
overall population). The lower the area under the
AD(q) curve, the higher the heterogeneity of treatment
effect according to different levels of the score. Tech-
nical details about the definition and the properties of
the AD(q) are reported in the cited paper [1].

Cut-off choice
Once the best model was selected, we choose a cut-off
to visualize the treatment effect in patients defined as
responders and non-responders. The cut-off was
chosen by a visual inspection of the AD(q) curve of
the selected model, as the point of change of slope.
Also, the shape of the distribution of the score was
evaluated. This distribution, in fact, represents the
predicted distribution of responses to the drug accord-
ing to the baseline profile in all the patients. The
shape and the width of the distribution can give indi-
cation about the heterogeneity of response to the
assessed drug and can help identify a possible cut-off
point separating responders vs non-responders. Once
a range of candidate cut-offs was identified by a visual
inspection of the AD(q) curve and of the score distri-
bution, a systematic procedure testing all the possible
cut-off values in the identified range of values was
run, choosing the one dividing the cohort in two
subgroups with the lowest p value for treatment by
subgroup interaction on the training set.

Final external validation
The score calculated on the training/validation set was
then tested on the external dataset. The p value for
the score by treatment interaction (indicating whether
the treatment has a different efficacy according to

different values of the score) was calculated. The di-
chotomized score (according to the previously defined
cut-off ) was tested, and HR and 95% confidence inter-
vals (95% CI) in the non-responders and in the
responders group were evaluated and compared. A
final evaluation of the differential treatment effect in
responders vs non-responders on all the three datasets
was carried out by a test for homogeneity of treatment
effects in each subgroup across the three studies.

Results
Summary of overall clinical trial results
Two arms were included from all studies: placebo and
laquinimod 0.6 mg daily. Complete clinical and demo-
graphic baseline data were available for 1101/1106
(99.6%) patients from ALLEGRO study, 881/884 (99.7%)
from BRAVO study, and 1456/1467 (99.3%) from CON-
CERTO study, for a total sample of 3438 patients. Table 1
reports the baseline characteristics of the patients in-
cluded in this analysis.
Overall, laquinimod reduced the disability progression

as compared to placebo by 36% (HR = 0.64, 95% CI
0.45–0.91, p = 0.01) in the ALLEGRO study, by 31%
(HR = 0.69, 95% CI 0.46–1.02, p = 0.06) in the BRAVO
study, and by 6% in the CONCERTO study (HR = 0.94,
95% CI 0.65–1.35, p = 0.72).

Score building on the training set and score selection on
the validation set
The full procedure for building and validating the
response score is described in Fig. 1.
All 2044 response scores from all possible combina-

tions of the selected baseline variables were generated
and tested on the training set (ALLEGRO trial). The
scores were generated according to the methodology
aforementioned in the “Methods” section with respect
to their ability to discriminate different levels of
response to treatment. Of the 2044 models generated,
906 had a p value for score by treatment interaction
< 0.05 on the training set. Of these, 302 had a p value
for treatment interaction on the validation set < 0.05
(BRAVO). The first five models ranked according to
the p for interaction on the validation set are
reported in Table 2 (the list of all the 2044 response
scores are available upon request).
As the five models reflect equivalent discriminant

ability on the validation set, these were re-fitted on
the merged training–validation set. The five resulting
scores were then ranked, and the one with the low-
est p for interaction (p = 0.00027) with treatment
was chosen.
The final selected response score was the following:
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Response score

¼ �0:38� age ðage < 20 years ¼ 1; age between 20 and 50

¼ 2; age > 50 years ¼ 3Þ þ 0:65� sex male ¼ 1; female ¼ 0ð Þ

þ0:39� relapses in the previous year numberð Þ � 0:002

�normalized brain volume cm3
� �� 0:20� presence of Gd

þactivity yes ¼ 1;no ¼ 0ð Þ

A constant value was added to the score (k = 3.44), in
order to obtain a mean response score equal to the
overall logHR. The score can be then interpreted as the
response to the drug predicted by the model for each

patient. The distribution of the response score is
reported in Fig. 2.
The distribution is not normal but is skewed to the

right and is better fitted by a mixture of two normal
distributions. The shape of the response score distri-
bution suggests the presence of responders and non-
responders to the drug. This was confirmed by the
AD(q) curve (Fig. 3), showing a change of curve slope.
The best score resulted to be:

cut−off ¼ −0:31

We then tested the score with this definition of
responders (those patients with a response score ≤ − 0.31)
and non-responders (those patients with a response

Table 1 Baseline demographic and clinical characteristics of the population enrolled in each of the three clinical trials included in
the analysis

ALLEGRO
N = 1101

BRAVO
N = 881

CONCERTO
N = 1456

p

Age (SD), years 38.69 (9.14) 37.31 (9.39) 36.37 (9.10) < 0.001

Gender, number of males (%) 345 (31.3) 280 (31.8) 465 (31.9) 0.947

Mean number of relapses in the previous year (SD) 1.25 (0.69) 1.30 (0.63) 1.32 (0.55) 0.018

Mean disease duration (SD), years 8.63 (6.79) 6.80 (6.29) 5.81 (4.07) < 0.001

Median EDSS (range) 2.5 (0.0–6.0) 2.5 (0.0–5.5) 2.5 (0.0–5.5) 0.281

Number of patients with baseline Gd+ scan (%) 475 (43.1) 320 (36.3) 578 (39.7) 0.008

Mean T2 lesion volume (SD) (log-transformed cm3) 1.70 (1.26) 1.47 (1.42) 1.60 (1.22) < 0.001

Mean T1 lesion volume (SD) (log-transformed cm3) −0.09 (1.93) 0.02 (1.87) 1.21 (1.31) < 0.001

Mean normalized brain volume (SD), cm3 1581.8 (93.2) 1584.0 (94.4) 1435.0 (93.0) < 0.001

Data reported as mean (standard deviation) and number (percentage) for continuous and categorical variables, respectively (unless otherwise specified)
EDSS Expanded Disability Status Scale, GD+ gadolinium-enhancing

Fig. 1 Flow chart of the process to define the response score using the training (ALLEGRO trial), the validation (BRAVO trial), and the external
validation (CONCERTO trial) approach
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score > − 0.31) on the trial’s dataset. The proportion of re-
sponders was 61.3% (N = 675) in the ALLEGRO and
58.3% (N = 514) in the BRAVO datasets. The treatment
effect in the subgroups defined as responders and
non-responders are reported in Table 3.
In the non-responders group, the observed HR for

disability progression of laquinimod vs placebo was 1.31
(95% CI 0.77–2.25) in the ALLEGRO trial and HR = 1.24
(95% CI 0.70–2.19) in the BRAVO trial (Fig. 4a, b). In
the responders group, the observed HR for disability
progression of laquinimod vs placebo was 0.38 (95% CI
0.23–0.62) in the ALLEGRO trial and HR = 0.40 (95% CI
0.22–0.73) in the BRAVO trial respectively (Fig. 4d, e).

External validation of the response score
These findings were lastly checked against the exter-
nal validation dataset (CONCERTO study) that was
not used in the previous analyses. The response
score by treatment interaction was statistically sig-
nificant (p = 0.033) providing indication that also on
CONCERTO the response score was able to identify a
heterogeneous response to laquinimod. In the non-
responders group (69.7% of the patients), the HR for dis-
ability progression of laquinimod vs placebo was 1.08 (95%
CI = 0.74–1.58), and, in the responders group (30.3% of
the patients), the HR for disability progression of laquini-
mod vs placebo was 0.44 (95% CI = 0.21–0.94) (Fig. 4c, f ).

Table 2 List of the five best models obtained defining the models on the training set and testing them on the validation set,
ordered according to the p value for treatment by score interaction on the merged training and validation datasets

Model p* training
set

p* validation
set

p* training +
validation set

Area under the
AD(q) curve

Response score 1 = − 0.38 × Age3 + 0.65 × sex +
0.39 × Rel − 0.002 × NBV − 0.20 × Gd+

0.026 0.004 0.00027 0.358

Response score 2 = 0.61 × sex + 0.37 × Rel − 0.002 × NBV − 0.23 × Gd+
− 0.02 × age + 0.02 × EDSS

0.037 0.003 0.00031 0.368

Response score 3 = 0.05 × EDSS4 + 0.61 × sex +
0.37 × Rel − 0.002 × NBV − 0.22 × Gd+ − 0.02 × age

0.040 0.004 0.00032 0.368

Response score 4 = 0.61 × sex + 0.37 × Rel − 0.002 × NBV − 0.22 × Gd+
− 0.02 × age

0.042 0.003 0.00033 0.369

Response score 5 = 0.63 × sex + 0.36 × Rel − 0.01 × age + 0.02 × EDSS 0.037 0.004 0.00044 0.356

Area under the AD(q) curve represents the curve generated by plotting the cumulative distribution of patients ranked by individual treatment response score and
the overall treatment effect relative to a given proportion of patients. The lower is the curve, the higher the heterogeneity of treatment effect. Age3: Age3 = 1 if
age < 20 years, Age3 = 2 if age in the range 20–50, Age3 = 3 if age ≥ 50 years; sex = 1 if sex =male and sex = 0 if sex = female, EDSS4 = 0 if EDSS 4, EDSS4 = 1
if EDSS ≥ 4
Rel number of relapses in the previous year; NBV normalized brain volume, in cubic centimeter; Gd+ gadolinium-enhancing; EDSS Expanded Disability Status Scale;
age age in years
*p for treatment by score interaction

Fig. 2 Histogram of the response score distribution, representing the distribution of the predicted response to the drug, with the two normal
curves giving the best fit to the score distribution
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The baseline characteristics of responders and non-
responders in the three trials are reported in Table 4.

Discussion
When many drugs become available for a disease, new
challenges arise for clinicians, based on the possibility to
make a choice. On the other hand, the scientific break-
throughs in our understanding of how a person’s unique
molecular and genetic profile makes them susceptible to
respond to specific treatments for some medical condi-
tions have made it possible to identify patient subgroups
who would benefit the most from specific therapies. This

is not the case for MS: since the first disease-modifying
drug was approved in 1993, the approach to therapies
has evolved in the direction of initiating treatment early
in the disease course and to switch to a different drug in
case of breakthrough disease activity or poor tolerability.
Few specific biomarkers (more related to safety rather
than efficacy) are available to guide the treatment choice.
It is also well recognized that the MS disease course, as
well as the drug response of most patients, is highly
heterogeneous. Thus, it is not possible to identify drug
responders or non-responders in advance, or even
retrospectively.
Post hoc subgroup analyses of clinical trials in MS did

not find specific markers of response to the approved
drugs: the results of a recent meta-analysis [12] inclu-
ding all the post hoc subgroup analyses of clinical trials
in RRMS indicated generic predictors of higher response
to immunomodulatory treatments, like a younger age, a
lower EDSS, and a higher MRI activity measured by the
presence of Gd+ lesions on the baseline scan. In this
paper, we report a method to create a combination of
baseline variables in a continuous score, representing a
predicted response to a specific treatment. It is possible,
in fact, that the full patient profile made up of the com-
bination of multiple baseline variables is more powerful
and more informative than each single characteristic to
predict the response to treatments. Interestingly, even if
all the three factors mentioned above are included into
the response score for this drug in MS, age is included
in the opposite direction (larger effect for older patients),
when in combination with the other selected factors.
This analysis of the distribution of response to treat-

ment is able to explain the contrasting results of the
three trials. The third clinical trial of laquinimod (the
CONCERTO trial) was launched to test the dispropor-
tionate effect on disability progression detected both in
the ALLEGRO (HR = 0.64, p = 0.01) and in the BRAVO
(HR = 0.69, p = 0.06) studies, despite the low activity of
the drug on inflammatory markers such as relapses and

Fig. 3 Treatment effect (hazard ratio (HR), on the y axis) in the
cumulative percentage of patients ranked by increasing values of the
response score (x axis). The HR is estimated on the increasing q% of
patients ranked by increasing values of the response score. Therefore,
the HR for a q = 0.5 represents the HR in the 50% of subjects with the
lower score, while the HR for a q = 1 represents the HR of the whole
cohort (100% of the subject enrolled)

Table 3 Response to treatment by treatment response score subgroups in the three clinical trials

Trial Score group Number of patients (%) Cumulative probability of 2-year EDSS progression Treatment effect

Total Placebo Laquinimod Placebo Laquinimod HR (95% CI) p*

ALLEGRO
N = 1101

NR 426 (38.7) 219 (51.4) 207 (48.6) 6.30 8.87 1.31 (0.77–2.25) 0.0007

R 675 (61.3) 336 (49.8) 339 (50.2) 10.74 4.03 0.38 (0.23–0.62)

BRAVO
N = 881

NR 367 (41.7) 181 (49.3) 186 (50.7) 7.09 8.81 1.24 (0.70–2.19) 0.006

R 514 (58.3) 268 (52.1) 246 (47.9) 9.12 3.65 0.40 (0.22–0.73)

CONCERTO
N = 1456

NR 1015 (69.7) 526 (51.8) 489 (48.2) 6.09 6.56 1.08 (0.74–1.58) 0.033

R 441 (30.3) 211 (47.8) 230 (52.2) 5.62 2.47 0.44 (0.21–0.94)

Score group: NR non-responders (patients with a response score > − 0.31), R responders (patients with a response score ≤ − 0.31)
EDSS Expanded Disability Status Scale, HR hazard ratio, CI confidence interval
*p for treatment by score interaction
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Fig. 4 Kaplan–Meier survival curves for the cumulative probability to be free from progression on the Expanded Disability Status Scale (EDSS)
confirmed at month 3, in responders (panels d-e-f) and non-responders (panels a-b-c), as defined by the response score, in ALLEGRO, BRAVO,
and CONCERTO trials

Table 4 Baseline demographic and clinical characteristics of responders and non-responders in the three trials

ALLEGRO BRAVO CONCERTO

NR
N = 426

R
N = 675

NR
N = 367

R
N = 514

NR
N = 1015

R
N = 441

Mean age (SD), years 37.1 (8.5) 39.7 (9.4) 36.6 (8.8) 37.8 (9.8) 36.0 (8.8) 37.3 (9.7)

Gender, males (%) 299 (70.2) 46 (6.8) 260 (70.8) 20 (3.9) 465 (45.8) 0 (0.0)

Mean number of relapses in the previous year (SD) 1.60 (0.80) 1.03 (0.49) 1.55 (0.75) 1.13 (0.45) 1.44 (0.61) 1.04 (0.20)

Mean disease duration (SD), years 8.22 (6.66) 8.89 (6.87) 6.62 (5.94) 6.92 (6.53) 5.94 (4.23) 5.51 (3.66)

Median EDSS (range) 2.5 (0–5.5) 2.5 (0–6) 3 (0–5.5) 2.5 (0–5.5) 2.5 (0–5.5) 2.5 (0–5.5)

Number of patients with Gd+ baseline scans (%) 159 (37.3) 316 (46.8) 123 (33.5) 197 (38.3) 352 (34.7) 226 (51.3)

Mean T2 lesion volume (SD), log-transformed cm3 1.97 (1.16) 1.53 (1.29) 1.72 (1.35) 1.29 (1.45) 1.68 (1.22) 1.41 (1.19)

Mean T1 lesion volume (SD), log-transformed cm3 0.31 (1.80) −0.33 (1.96) 0.42 (1.76) − 0.27 (1.90) 1.31 (1.31) 0.97 (1.29)

Mean normalized brain volume (SD), cm3 1553.9 (90.5) 1599.5 (90.6) 1547.5 (91.8) 1610 (87.4) 1410.4 (91.5) 1491.7 (68.1)

Data reported as mean (standard deviation) and number (percentage) for continuous and categorical variables, respectively (unless otherwise specified).
Characteristics presented in italics are those that present a significant difference between respondent and non-respondent (p < 0.05)
NR non-responders (patients with a response score > − 0.31), R responders (patients with a response score ≤ − 0.31), EDSS Expanded Disability Status Scale,
GD+ gadolinium-enhancing
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MRI endpoints. The present analysis highlighted that
there is a subgroup of patients (that can be identified by
the set of baseline variables combined in the response
score) with a larger response to laquinimod (about 60%
of patients both in ALLEGRO and in BRAVO) leading
to an EDSS progression risk reduction higher than 60%,
while there is a subgroup with no effect (about 40% of
patients). The proportion of non-responding patients is
higher in the CONCERTO study (around 70%) while
those with a favorable response score are just the 30%,
due to differences in baseline characteristics as com-
pared to those of the cohort enrolled in the previous
studies. In the subgroup of responding patients, the
EDSS progression risk reduction is of the same mag-
nitude as in the two previous trials. Therefore, this
analysis suggests that the CONCERTO trial failed to
demonstrate a treatment benefit mainly because the
proportion of non-responding patients enrolled in this
study was higher.
It is important to note that the model selection was

based here just on objective model performance criteria.
Other criteria, more focused on biological/medical
knowledge or driven by parsimony and simplicity of
implementation in clinical practice, could be considered
in the final step for model selection.

Conclusions
This study demonstrates the possibility to refine and
personalize the treatment effect estimated in randomized
clinical trials by using the baseline demographic and clin-
ical characteristics of the included patients. This is an easy
and affordable method toward therapy personalization,
suggesting patient profiles related to a larger benefit from
a specific drug.
This analysis was conducted on trials of a drug that

was not approved on the market; therefore, the implica-
tions of this study are not for the specific treatment: the
main aim of this analysis is to show the potential of the
method and to stimulate similar exercises (with practical
implications) on approved therapies. This analysis could
be run, in fact, on clinical trials testing every drug ap-
proved for a specific condition to create a set of drug-
specific scores. This effort calls for pharmaceutical com-
panies to allow the re-analysis of clinical trial data and
the publication of results that might indicate patient
characteristics of drug responders. Ultimately, the value
of personalized treatment approaches should be con-
firmed by evidence generated by prospective clinical tri-
als which incorporate the response scores.
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