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Abstract 

Background Metabolite signatures of long-term alcohol consumption are lacking. To better understand the molecu-
lar basis linking alcohol drinking and cardiovascular disease (CVD), we investigated circulating metabolites associated 
with long-term alcohol consumption and examined whether these metabolites were associated with incident CVD.

Methods Cumulative average alcohol consumption (g/day) was derived from the total consumption of beer, wine, 
and liquor on average of 19 years in 2428 Framingham Heart Study Offspring participants (mean age 56 years, 52% 
women). We used linear mixed models to investigate the associations of alcohol consumption with 211 log-trans-
formed plasma metabolites, adjusting for age, sex, batch, smoking, diet, physical activity, BMI, and familial relationship. 
Cox models were used to test the association of alcohol-related metabolite scores with fatal and nonfatal incident 
CVD (myocardial infarction, coronary heart disease, stroke, and heart failure).

Results We identified 60 metabolites associated with cumulative average alcohol consumption (p < 0.05/211 ≈ 
0.00024). For example, 1 g/day increase of alcohol consumption was associated with higher levels of cholesteryl 
esters (e.g., CE 16:1, beta = 0.023 ± 0.002, p = 6.3e − 45) and phosphatidylcholine (e.g., PC 32:1, beta = 0.021 ± 0.002, 
p = 3.1e − 38). Survival analysis identified that 10 alcohol-associated metabolites were also associated with a differen-
tial CVD risk after adjusting for age, sex, and batch. Further, we built two alcohol consumption weighted metabolite 
scores using these 10 metabolites and showed that, with adjustment age, sex, batch, and common CVD risk factors, 
the two scores had comparable but opposite associations with incident CVD, hazard ratio 1.11 (95% CI = [1.02, 1.21], 
p = 0.02) vs 0.88 (95% CI = [0.78, 0.98], p = 0.02).

Conclusions We identified 60 long-term alcohol consumption-associated metabolites. The association analysis 
with incident CVD suggests a complex metabolic basis between alcohol consumption and CVD.
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Background
Alcohol drinking is a common lifestyle in many cul-
tures and is a modifiable risk factor associated with over 
200 health problems, including cardiovascular disease 
(CVD)  [1], dementia [2], neuropsychiatric conditions 
[3], liver cirrhosis [4], diabetes [5], and several types of 
cancer, e.g., gastric cancer [6] and liver cancer [7]. For 
example, a systematic review and meta-analysis of 23 
observational studies found that moderate alcohol con-
sumption was related to a higher cardiovascular risk 
within 24  h after alcohol intake; however, after 24  h, 
moderate alcohol consumption seemed to have a protec-
tive effect on myocardial infraction [8]. In contrast, heavy 
alcohol intake had a continued risk for cardiovascular 
events [8].

Metabolites are small molecules that are intermedi-
ates or end-products of metabolism in many cellular 
processes [9, 10]. Metabolites can be quantified via high-
throughput liquid chromatography with tandem mass 
spectrometry (LC/MS) methods [11]. Association analy-
ses of alcohol consumption and metabolites may help 
us gain insights into the effect of alcohol consumption 
on disease pathways. Several European studies investi-
gated associations of total alcohol intake with circulat-
ing concentrations of metabolites [12–14]. One study 
investigated the association of 123 metabolites with alco-
hol intake using a discovery (n = 1983) and replication 

(n = 991) study design in healthy participants. This study 
found that 72 metabolites were significantly associated 
with alcohol consumption in the discovery set, and 34 
metabolites remained significance in the replication set 
[12]. A population-based study investigated 131 metabo-
lites in 2090 individuals and revealed that 40 metabolites 
in men and 18 metabolites in women significantly dif-
fered in their concentrations between moderate-to-heavy 
and light alcohol drinking [14].

While these metabolomic studies help us to under-
stand the potential molecular basis of alcohol consump-
tion, most studies analyzed the alcohol consumption 
measured at a single time point, which may not represent 
the habitual or long-term alcohol consumption. A better 
understanding of the relationships between long-term 
alcohol consumption and circulating metabolites, as well 
as the relationships of alcohol-associated metabolites 
with CVD risk, may help elucidate the complex rela-
tionship of alcohol consumption with etiology and pro-
gression of alcohol-associated diseases. To that end, our 
study used longitudinal data from the Framingham Heart 
Study (FHS) Offspring cohort to investigate the follow-
ing three aims (Fig.  1). First, we conducted association 
analyses of cumulative average alcohol consumption over 
20  years with circulating metabolites. Second, we ana-
lyzed the specific associations of metabolites with cumu-
lative consumption of three types of alcoholic beverages: 

Fig. 1 The study flowchart 
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beer, wine, and liquor. Third, we conducted association 
analyses of alcohol-associated metabolites with incident 
CVD.

Methods
Population
The Offspring cohort (n = 5124) of the FHS was recruited 
in 1971, including the children of the Original cohort 
and spouses of these children [15]. The Offspring par-
ticipants underwent in-person health examinations every 
4 to 8  years to collect comprehensive demographic and 
clinical measures such as risk factors for cardiovascular 
and neurodegenerative diseases [16]. This study analyzed 
Offspring participants who had metabolite measure-
ments at the fifth examination (n = 2526). We excluded 
participants who attended less than three examinations 
between examination 1 and examination 5 (n = 25) and 
those who were younger than 18  years old at exami-
nation 1 (n = 73). The final sample size was 2428 for 
statistical analyses (Fig.  1). All participants provided 
written informed consent. All FHS study protocols were 
approved by the Boston University Medical Center Insti-
tutional Review Board.

Metabolite quantification
Targeted metabolite profiling was conducted by LC/MS 
platform and hydrophilic interaction chromatography 
method as previously described [17–19]. The targeted 
metabolite profiling includes negatively charged polar 
metabolites (i.e., organic acids, bile acids, and sugars), 
positively charged polar metabolites (i.e., amino acids, 
urea cycle intermediates, nucleotides), and lipid metabo-
lite species (i.e., cholesterol esters (CE), diacylglycerols 
(DAGs), lysophosphatidylcholines (LPCs), lysophosphati-
dylethanolamines (LPEs), phosphatidylcholines (PCs), 
sphingomyelins (SMs), triacylglycerols (TAGs)) [17–20]. 
Two metabolites, TAG 54:5 and TAG 54:6, had identical 
values for all participants; we removed TAG 54:6 from 
the present analysis. Five metabolites were also excluded 
owing to large proportion of missingness in greater than 
1000 participants, resulting in 211 metabolites for the 
subsequent analyses. Each metabolite measurement was 
natural log transformed and then standardized to have 
mean at zero and standard deviation (SD) at 1. Metabo-
lite values beyond ± 4 SD away from the mean of that 
metabolite were set to be at ± 4 SD [19].

Alcohol consumption
At each examination, alcohol consumption information 
was collected through the FHS technician-administered 
questionnaires [21]. The frequency of three types of 
alcoholic beverages (i.e., standard drinks of beer, wine, 
or liquor) in a typical week or month were collected. 

In this study, we used “grams of alcohol consumed per 
day”, which was derived from the summation of the total 
standard drinks of beer, wine (red or white), or liquor. 
One standard drink was defined as one 12 oz. beer, one 
4 oz. wine, or one 1.5 oz. 80 proof alcohol spirit, and one 
drink contains approximately 14  g ethanol [21, 22]. We 
calculated the grams per day for all types of alcoholic 
beverages (i.e., total alcohol consumption), as well as for 
each type (i.e., grams per day of beer, wine, or liquor). To 
reflect long-term alcohol consumption, we calculated the 
cumulative average alcohol consumption, i.e., the mean 
over up to five examinations. We categorized participants 
into three groups according to their total average alcohol 
consumption: non-drinkers (0  g/day); moderate drinker 
(0.1–28 g/day in men and 0.1–14 g/day in women); and 
heavy drinkers (> 28  g/day in men and > 14  g/day in 
women).

Disease traits
CVD events were identified through adjudication by a 
panel of three physicians [23]. The CVD event data were 
obtained from annual health history updates based on 
inpatient or outpatient medical records, physical exami-
nations, and mortality registry. CVD was comprised 
of myocardial infarction (MI), coronary heart disease 
(CHD), stroke, heart failure (HF), and death to any car-
diovascular conditions [24]. We analyzed incident CVD 
outcome after removal of the prevalent cases at the fifth 
examination.

Covariates
Demographic information (sex and age), smoking sta-
tus, dietary intake, time and intensity of physical activi-
ties, and medication use were obtained from standard 
questionnaire [25]. We calculated a physical activ-
ity index using the following formula: 1 × sleep hours/
day + 1.1 × sedentary hours/day + 1.5 × slight activity 
hours/day + 2.4 × moderate activity hours/day + 5 × heavy 
activity hours/day. We used Dietary Approaches to Stop 
Hypertension (DASH) score to define diet quality. We 
calculated the diet quality score based on consumptions 
of eight dietary components: vegetables, fruits, nuts and 
legumes, whole grains, dairy, red and processed meat, 
sugar-sweetened beverages, and sodium [26]. Systolic 
blood pressure (SBP) was measured twice by physicians 
and the average blood pressure was used in the present 
analysis. Anthropometry was measured by technicians. 
Standard assays were used to determine levels of fasting 
glucose and plasma lipids. We defined diabetes if a par-
ticipant had fasting glucose ≥ 126 mg/dL or using diabe-
tes medications. All covariates were measured at the fifth 
examination.
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Statistical analysis
Association analysis of metabolites and alcohol consumption
In primary association analyses, we analyzed the relation-
ships of metabolites (dependent variables) with cumula-
tive average alcohol consumption of total alcohol, beer, 
wine, and liquor as independent variables (Fig.  1). We 
used linear mixed models to quantify these associations, 
adjusting for age, sex, (metabolite measurement) batch, 
smoking status, BMI, physical activity, and diet quality 
score as fixed effect covariates (all measured at the fifth 
examination), and familial relationship as a random effect 
covariate. We used Bonferroni correction (p < 0.05/211 ≈ 
0.00024) to account for multiple hypothesis testing with 
211 metabolites.

We conducted two secondary analyses as described 
below. The level of alcohol consumption is usually larger 
in men compared to women [27]; therefore, we tested 
sex–alcohol interaction by adding a production term of 
sex and alcohol consumption. We additionally adjusted 
for a serum creatinine-based estimated glomerular fil-
tration rate (eGFR) to investigate if kidney function 
confounded the relationships between the cumulative 
average alcohol consumption and metabolites. (Fig. 1).

Association analysis of alcohol‑associated metabolites 
and CVD
Metabolites significantly associated with cumulative 
average alcohol consumption were used as independent 
variables in testing for associations with incident CVD. 
A Cox proportional hazards regression model was used, 
adjusting for sex, age, and batch in the base model. In the 
multivariable model, we additionally adjusted for BMI, 
SBP, hypertension treatment status, diabetes, smoking 
status, and total and high-density lipoprotein cholesterol 
levels. All covariates included were collected at the fifth 
examination.

To study an aggregate effect of metabolites with the 
development of CVD, we constructed weighted compos-
ite scores with CVD-associated metabolites that were 
identified in the base model. We used estimates from the 
association analyses between cumulative average alcohol 
consumption and the metabolites to weigh the concen-
trations of the corresponding metabolites. We then cal-
culated metabolite scores as the linear combination of 
weighted metabolite concentrations: Tij = jWjVij . Two 
metabolite scores were calculated based on the direc-
tion of the associations between alcohol consumption, 
metabolites, and incident CVD. The first score aggre-
gated metabolites with consistent direction, i.e., those 
were either positively or negatively associated with both 
alcohol consumption and CVD. The second score aggre-
gated metabolites with opposite direction, i.e., those 
were positively associated with alcohol consumption 

and negatively associated with CVD or those were nega-
tively associated with alcohol consumption and positively 
associated with CVD. The composite scores were stand-
ardized with mean at 0 and standard deviation at 1. We 
performed association analysis of the continuous com-
posite scores with the development of CVD, adjusting for 
age, sex, batch, BMI, SBP, hypertension treatment status, 
diabetes, smoking status, and total and high-density lipo-
protein cholesterol levels. All association analyses were 
performed using R software (version 4.0.5).

Pathway analysis for metabolites
Pathway analyses were performed to identify biological 
pathways related to the alcohol-associated metabolites 
using MetaboAnalyst 5.0 [28]. Two pathway libraries 
used in these analyses are Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) and Small Molecule Pathway 
Database (SMPDB) for Homo sapiens. We conducted 
hypergeometric test with default parameters in Metabo-
Analyst and reported significant pathways at false discov-
ery rate (FDR) < 0.05.

Results
Participant characteristics
This study included mostly middle-aged to older commu-
nity dwelling men and women (n = 2428, mean age = 55.9 
± 9.3 years, 52% women at fifth examination) (Table 1). 
The median of the cumulative average of total alcohol 
consumption was 7.7  g/day (interquartile range 16.8  g/
day). Our participants were overweight (mean BMI 
27.5 kg/m2) and 18.3% of them were current smokers at 
the fifth examination. Compared to women, men had 
greater alcohol consumption at all examinations: median 
consumption was 13.8 g/day in men versus 4.4 g/day in 
women at fifth examination. The pairwise Spearman cor-
relation between total alcohol consumption at all five 
examinations is shown in Additional file 1: Fig. S1.

Associations of total alcohol consumption and metabolites
We found that 60 metabolites were significantly associ-
ated with the cumulative average total alcohol consump-
tion (p < 0.05/211 ≈ 0.00024) adjusting for potential 
confounders (Table 2, Additional file 8: Table. S1). Of the 
60 metabolites, 40 metabolites displayed positive associa-
tions with the cumulative average alcohol consumption 
(Fig.  2, Additional file  8: Table. S1). The most signifi-
cant metabolite was cholesteryl palmitoleate (CE16:1), 
a plasma cholesteryl ester that is involved in cholesterol 
metabolism [29]. One gram per day higher alcohol con-
sumption was associated with higher level of cholesteryl 
palmitoleate (beta = 0.023, p = 6.3e − 45) in the blood. 
Several phosphatidylcholine metabolites (e.g., PC 32:1 
and PC 34:1) were positively associated with alcohol 
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consumption, for example, 1  g/day higher of alcohol 
consumption was associated with higher level of PC 
32:1 (beta = 0.021, p = 3.1e − 38) in blood. Among the 20 
metabolites (Fig. 2) that were negatively associated with 
alcohol consumption, triacylglycerol 54:4 (TAG 54:4) dis-
played the most significant association (beta =  − 0.017, 
p = 6.17e − 22). With additional adjustment for eGFR, the 
association between alcohol consumption and metabo-
lites remained largely the same (Pearson correlation coef-
ficient = 0.99, Additional file 2: Fig. S2). Compared to the 
associations with the cumulative average total alcohol 
consumption, analysis using the current alcohol con-
sumption at the fifth examination yielded similar alco-
hol–metabolite associations (Pearson r = 0.99; Additional 
file 3: Fig. S3).

Association of each type of alcoholic beverages 
and metabolites
We found that 19 metabolites were significantly associ-
ated with the cumulative average consumption of beer, 30 
metabolites were significantly associated with the cumu-
lative average consumption of wine, and 32 metabolites 
were significantly associated with the cumulative average 
consumption of liquor (Fig.  3, Additional file  8: Table. 
S1). Among the significant ones, seven metabolites (CE 
16:1, LPC 20:5, PC 32:0, PC 32:1, PC 34:1, PC-B 36:4, and 
fumarate-malate) were significantly associated with the 
cumulative consumption of all three types of alcoholic 
beverages (Additional file 4: Fig. S4).

Table 1 Participant characteristics

The characteristics were measured at exam 5 (i.e., the baseline). Continuous variables are displayed as mean (standard deviation) or median (Q1–Q3). Binary variables 
are displayed as n (%)

Variable Male (n = 1156) Female (n = 1272) Total (n = 2428)

Age, years 56.5 (9.2) 55.4 (9.4) 55.9 (9.3)

Body mass index, kg/m2 28.3 (4.1) 26.9 (5.5) 27.5 (4.9)

Physical activity index 35.8 (7.2) 33.3 (4.7) 34.5 (6.2)

Diet score 16.3 (4.3) 17.9 (3.9) 17.1 (4.1)

Estimated glomerular rate, ml/min/1.73 m2 73.8 (16.3) 67.5 (14.7) 70.5 (15.8)

Fasting blood glucose, mg/dL 105.3 (31.7) 97.9 (25.2) 101.4 (28.7)

Total cholesterol, mg/dL 203.0 (35.1) 209.7 (37.9) 206.5 (36.7)

High-density cholesterol, mg/dL 42.9 (11.1) 55.4 (15.4) 49.4 (14.9)

Systolic blood pressure, mmHg 129.7 (17.9) 124.2 (19.6) 126.9 (19.0)

Current smoker, n (%) 208 (18.0%) 236 (18.6%) 444 (18.3%)

Cumulative average alcohol consumption variable, g/day; median (Q1, Q3)

Total alcohol consumption 13.8 (5.3, 27.5) 4.4 (1.7, 11.2) 7.7 (2.5, 19.3)

Beer consumption 4.4 (0.8, 13.4) 0 (0, 0.8) 0.8 (0, 5.2)

Wine consumption 1.3 (0.4, 4.0) 1.7 (0.4, 4.7) 1.3 (0.4, 4.3)

Liquor consumption 1.6 (0.4, 7.0) 1.0 (0.4, 3.2) 1.2 (0.4, 4.4)

Prevalent CVD 114 (12.5%) 78 (6.1%) 222 (9.1%)

Incident CVD 346 (29.9%) 290 (22.8%) 636 (26.2%)

Table 2 The top 20 significant metabolites associated with 
cumulative average alcohol consumption

Top 20 out of 60 metabolites significantly associated with the cumulative 
average total alcohol consumption (p < 0.00024) adjusting for age, sex, batch, 
smoking status, BMI, physical activity index and diet score as fixed effect,  and 
family relationship as random effect

Metabolites Beta SE P value

CE 16:1 0.023 0.002 6.30E − 45

PC 32:1 0.021 0.002 3.10E − 38

PC 34:1 0.019 0.002 5.99E − 30

PC-B 36:4 0.017 0.002 5.18E − 24

TAG 54:4  − 0.017 0.002 6.17E − 22

PC 32:0 0.015 0.002 1.13E − 19

CE 20:5 0.014 0.002 1.14E − 17

LPC 20:5 0.013 0.002 2.17E − 15

TAG 52:4  − 0.013 0.002 9.05E − 15

TAG 54:5  − 0.013 0.002 1.18E − 14

TAG 52:3  − 0.013 0.002 1.58E − 14

TAG 48:0 0.012 0.002 1.74E − 13

Fumarate-malate 0.012 0.002 7.00E − 13

SM 24:1 0.012 0.002 5.17E − 12

Dimethylglycine  − 0.010 0.001 7.48E − 12

Xanthurenate 0.011 0.002 3.53E − 11

PC 34:4 0.011 0.002 9.52E − 11

TAG 52:5  − 0.011 0.002 4.81E − 10

PC 36:3 0.010 0.002 7.39E − 10
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While the three types of alcoholic beverages displayed 
largely consistent associations with metabolites (Addi-
tional file 5: Fig. S5), beer consumption appeared to have 
slightly weaker associations compared to consumptions 
of wine and liquor (Additional file 5: Fig. S5). Among 50 
metabolites associated with at least one type of alcohol 
consumption, we calculated the pair-wise ratio of regres-
sion coefficients for each metabolite. When we used an 
absolute ratio of two as cutoff, our analysis revealed that 
three metabolites (LPC 16:1, PC 34:3 and PC 38:4) dis-
played stronger positive association with the cumulative 
average consumption of beer; one metabolite (3-urei-
dopropionic acid) showed positive association with liq-
uor consumption liquor; and three metabolites (betaine, 
2-hydroxyglutaric acid, xanthurenate) were positively and 
two metabolites (isoleucine and valine) were negatively 
associated with wine consumption (Additional file  9: 
Table. S2).

Sex‑specific associations of metabolite with cumulative 
average total alcohol consumption
We conducted interaction test for sex and alcohol con-
sumption and found that 13 metabolites (betaine, CE 
14:0, CE 16:1, PC 32:0, PC 32:1, PC 34:1, TAG 48:0, TAG 
52:4, TAG 54:4, TAG 54:5, xanthurenate, dimethylglycine, 
and kynurenic acid) had a significant interaction term 
(p < 0.05/211 = 0.00024). Eleven (CE 14:0, CE 16:1, PC 

32:0, PC 32:1, PC 34:1, TAG 48:0, TAG 52:4, TAG 54:4, 
TAG 54:5, xanthurenate, and dimethylglycine) of these 13 
metabolites were in 60 metabolites that were significantly 
associated with the cumulative average total alcohol 
consumption. We applied sex-specific analysis to exam-
ine the associations of cumulative average total alcohol 
consumption with these 13 metabolites. For women, the 
associations were significant for all these 13 metabolites 
(p < 0.05/13 = 0.0038), while for men, 10 metabolites (CE 
16:1, PC 32:0, PC 32:1, PC 34:1, TAG 48:0, TAG 52:4, 
TAG 54:4, TAG 54:5, xanthurenate, and dimethylglycine) 
had significant associations (Additional file  10: Table. 
S3). The observed sex-alcohol interaction was due to the 
stronger associations in women than that in men (Fig. 4). 
For example, 1  g/day higher alcohol consumption was 
associated with 0.036 standard deviation increases in the 
level of CE 16:1 in women (p value = 7.26e − 25), while 
0.019 in men (p value = 4.25e − 22).

Pathway analysis for alcohol‑associated metabolites
We conducted pathway analyses of the 60 metabolites 
that were significantly associated with the cumulative 
average total alcohol consumption. Using the KEGG 
library, we found three pathways to demonstrate evi-
dence of enrichment among our significant metabolites 
including (1) arginine biosynthesis (FDR = 0.002); (2) 
valine, leucine, and isoleucine biosynthesis (FDR = 0.04); 

Fig. 2 Volcano plot for association of cumulative average alcohol consumption and metabolites. Linear mixed model was performed adjusting 
for age, sex, batch, smoking status, BMI, physical activity index, and diet score as fixed effect, and family relationship as random effect. Blue dots 
represent significant relationship (p value < 0.00024), grey dots represent non-significant relationship. CE cholesteryl ester, PC phosphatidylcholine, 
TAG triacylglycerol
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and (3) aminoacyl-tRNA biosynthesis (FDR = 0.007) 
(Additional file 11: Table. S4). Using the SMPDB library, 
we did not observe significant pathways at FDR 0.05 level 
(Additional file 12: Table. S5).

Association with incident CVD
We included 2138 participants without prevalent CVD 
in association analyses of the 60 alcohol-associated 
metabolites with incident CVD. A total of 636 partici-
pants developed incident CVD with a median follow-up 
of 18.1  years. With adjustment for sex and age, alcohol 
consumption was not associated with incident CVD, 
hazard ratio (HR) = 1, p = 0.87. Additional adjustments 
for BMI, SBP, hypertension treatment status, diabetes, 
smoking status, and total and high-density lipoprotein 
cholesterol levels (i.e., multivariable model) did not sub-
stantially alter the association. In addition, we observed 
no significant pairwise comparisons in nondrinkers, 
moderate drinkers, and heavy drinkers. In the multivari-
able model, HR was 1.09 for nondrinkers vs. moderate 

drinkers (p = 0.62) and 1.15 for heavy drinkers vs. moder-
ate drinkers (p = 0.16).

Ten metabolites (TAG 50:2, TAG 50:1, TAG 48:1, 
TAG 48:0, isoleucine, leucine, TAG 52:3, TAG 46:0, PC 
32:1, and glutamine) were significantly associated with 
the development of CVD (p < 0.05/60 ≈ 0.0008) in the 
base model adjusting for age, sex, and batch (Additional 
file 13: Table. S6). Out of the ten metabolites, higher lev-
els of nine metabolites (TAG 50:2, TAG 50:1, TAG 48:1, 
TAG 48:0, TAG 46:0, PC 32:1, TAG 52:3, isoleucine and 
leucine) and lower levels of one metabolite (glutamine) 
were associated with an increased risk of incident CVD 
(HR ranges from 1.16 to 1.33, p < 0.05/60≈0.0008). After 
additionally adjusting for BMI, SBP, hypertension treat-
ment status, diabetes, smoking status, and total and high-
density lipoprotein cholesterol level, the association with 
incident CVD remained nominally significant at p < 0.05 
for four metabolites (TAG 50:2, TAG 50:1, TAG 48:1, and 
glutamine; Additional file 13: Table. S6). We further ana-
lyzed the associations of the 10 metabolites with the inci-
dence of four CVD subtypes, including coronary heart 

Fig. 3 Comparison of association between different types of alcohol beverages. A Comparison of effect sizes between different types of alcohol 
beverages. B Comparison of -log 10 (p values) between different types of alcohol beverages. All linear mixed models adjusted for age, sex, 
batch, smoking status, BMI, physical activity index and diet score as fixed effect, and family relationship as random effect. CE cholesterol esters, 
DAG diacylglycerols, LPC lysophosphatidylcholines, LPE lysophosphatidylethanolamines, PC phosphatidylcholines, SM sphingomyelins, TAG 
triacylglycerols. Metabolites shown in panel had significant association with at least one type of alcohol (beer, wine, and liquor) or total alcohol 
consumption
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disease (CHD), myocardial infarction (MI), heart failure 
(HF), and stroke. As shown in Additional file  14: Table. 
S7, with adjustment for age, sex, and batch, we observed 
that TAG 52:3 was associated with MI (HR = 1.36, 
p = 1.07e − 4), PC 32:1, TAG 48:0, TAG 50:1,TAG 50:2 
and isoleucine were associated with HF (HR ranges from 
1.27 to 1.40, p < 0.0008), TAG 48:1, TAG 50:1, TAG 50:2, 
TAG 52:3, isoleucine and leucine were associated with 
CHD (HR ranges from 1.23 to 1.32, p < 0.0008). However, 
for metabolites significantly related to CVD subtypes in 
the base model, additional adjustment for clinical risk 
factors attenuated the associations with CVD subtypes to 
nonsignificant (p > 0.05).

We created two weighted metabolite scores; the first 
score included six metabolites (TAG 50:2, TAG 50:1, TAG 
48:1, TAG 48:0, TAG 46:0 and PC 32:1) that had positive 
association with both the cumulative average total alcohol 
drinking and incident CVD in the base models and glu-
tamine, which was negatively associated with both the 
cumulative average total alcohol drinking and incident 
CVD in the base model (Additional file 15: Table. S8). The 
second score included three metabolites (TAG 52:3, iso-
leucine and leucine), which had inverse association with 

the cumulative average total alcohol drinking and positive 
association with incident CVD in the base model (Addi-
tional file 15: Table. S8). In multivariable model analysis, 
per standard deviation increase of the first metabolite 
score was associated with 11% higher hazard of incident 
CVD (p = 0.02, 95%CI = [1.02, 1.21]; Fig. 5) and per stand-
ard deviation increase of the second metabolite score 
was associated with 12% lower hazard of incident CVD 
(p = 0.02, 95%CI = [0.78, 0.98]; Fig. 5).

Nonlinear association of alcohol consumption 
with metabolites
We compared metabolite level among nondrinkers, 
moderate drinkers, heavy drinkers, adjusting for age, 
sex, batch, BMI, SBP, hypertension treatment status, 
diabetes, smoking status, and total and high-density 
lipoprotein cholesterol levels. At p < 0.05, we observed 
that for two metabolites (LPC 16:1 and histidine), their 
level in moderate drinkers was either lower or higher 
than both of that in nondrinkers and heavy drinkers 
(Additional file 6: Fig. S6). None of the two metabolites 
were associated with incident CVD.

Fig. 4 Comparison of associations of cumulative average alcohol consumption and metabolites between men and women. Linear mixed model 
was performed in women-only and men-only samples. Covariates included age, batch, smoking status, BMI, physical activity index and diet score 
as fixed effect, and family relationship as random effect. CE cholesteryl ester, PC phosphatidylcholine, TAG triacylglycerol
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Discussion
In this present study, we investigated the associations 
between the cumulative average alcohol consumption 
and 211 circulating metabolites in the 2428 FHS partici-
pants. Of the 211 metabolites, the cumulative average 
alcohol consumption was associated with 60 metabo-
lites. We found that nine metabolites were more strongly 
associated with a specific type of alcoholic beverage. We 
also found that the cumulative average total alcohol con-
sumption displayed stronger associations with 13 metab-
olites in women than men. Furthermore, we created two 
alcohol consumption-associated metabolite scores and 
showed that they had comparable but opposite associa-
tion with incident CVD. Taken together, with targeted 
metabolomic profiling, our study identified a series of 
alcohol consumption-associated circulating metabolites, 
and via these metabolites, alcohol consumption may have 
counteractive effects on CVD risk.

Our results showed that higher level of alcohol con-
sumption was associated with higher plasma levels 
for about two-thirds of the 60 significant metabolites. 
Among the top positively associated metabolites were 
cholesteryl esters (e.g., CE16:1 and CE20:5), phosphati-
dylcholine (e.g., PC 32:1), and lysophosphatidylcholine 
(e.g., LPC 20:5). In addition, we observed that 14 plasma 
triacylglycerols (TAGs) were significantly associated with 
total alcohol consumption. Among alcohol-related TAGs, 
six (TAG 52:3, TAG 52:4, TAG 52:5, TAG 54:3, TAG 54:4, 
and TAG 54:5) displayed negative associations with alco-
hol consumption (i.e., lower alcohol consumption was 
associated with higher levels of TAGs) while eight (TAG 
46:0, TAG 48:0, TAG 48:1, TAG 50:1, TAG 50:2, TAG 
58:10, TAG 58:11, and TAG 60:12) displayed positive 
associations with alcohol consumption. TAGs emerge 
as biomarkers of a liver-to-β-cell axis that links hepatic 

β-oxidation to β-cell functional mass and insulin secre-
tion in pancreas [30]. TAGs are broken into glycerol and 
free fatty acids in the process of lipolysis, and free fatty 
acids are either processed by beta-oxidation or converged 
to ketone [31]. In our association analyses between alco-
hol-associated metabolites and incident CVD, we showed 
that six TAGs (TAG 50:2, TAG 50:1, TAG 48:1, TAG 48:0, 
TAG 46:0, and TAG 52:3) were associated with incident 
CVD using the base models. Specifically, PC 32:1 and 
TAG 48:0 were positively associated with HF. In addition, 
TAG 52:3 was positively associated with both MI and 
CHD. Furthermore, TAG 50:1 and TAG 50:2 were posi-
tively associated with both HF and CHD. Among these 
six TAGs, the association remained significant (p < 0.05) 
with CVD for TAG 50:2, TAG 50:1, and TAG 48:1 after 
adjusting for common cardiometabolic CVD risk factors. 
However, likely due to the reduced number of cases for 
each CVD subtype (relative to the analysis using the com-
posite incident CVD as the outcome variable), our mul-
tivariable analysis may lack sufficient statistical power. 
Therefore, we observed that additional adjustment for 
common cardiometabolic CVD risk factors attenuated 
associations with CVD subtypes (p > 0.05). Overall, these 
observations are in line with the well-known effects of 
alcohol intake on lipid metabolism [32].

Alcohol consumption was also associated with several 
types of circulating metabolites, other than TAGs. For 
example, we showed that alcohol consumption was asso-
ciated with reduced levels of dimethylglycine. Dimethylg-
lycine plays an important role in one-carbon metabolism 
as a methyl donor [33, 34]. This function may be related 
to our previous observations regarding the strong cor-
relation of alcohol consumption with DNA methylation 
[22]. Nonetheless, the extent to which alcohol consump-
tion affects the source of one-carbon metabolism and the 

Fig. 5 Forest plot for CVD with metabolite composite score. Seven-met, the weighted score obtained from seven metabolites, TAG 50:2, 
TAG 50:1, TAG 48:1, TAG 48:0, TAG 46:0, PC 32:1, and glutamine; three-met, the weighted score obtained from three metabolites, TAG 52:3, 
isoleucine, and leucine. Weights were obtained from the beta coefficients of association test between cumulative average alcohol consumption 
and metabolites in linear mixed models. In the Cox regression, base model included age, sex, and batch as covariates, and multivariable model 
additionally adjusted for BMI, SBP, hypertension treatment status, diabetes, smoking status, and total and high-density lipoprotein cholesterol level
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subsequent impact on the risk of developing CVD war-
rant further investigation.

Among the metabolites that were negatively associated 
with alcohol consumption, valine, isoleucine, and leu-
cine are branched-chain amino acids (BCAA). A recent 
review summarized the complex relationship between 
impaired BCAA homeostasis to CVD [35]. Several lines 
of evidence suggest that higher BCAA levels are associ-
ated with increased risk of obesity and diabetes, which is 
consistent with the present observations on the positive 
association of leucine and isoleucine with incident CVD. 
Nonetheless, future studies in larger sample size and 
diverse populations are needed to examine the relation-
ships between alcohol consumption, BCAA, and CVD. 
Several lines of evidence suggest that higher BCAA levels 
are associated with increased risk of obesity and diabe-
tes, e.g., Ho’s study demonstrated positive associations 
between BCAA levels and BMI, fasting glucose, Homeo-
static Model Assessment for Insulin Resistance (HOMA-
IR) in the same FHS participants [17]. These data are 
consistent with our previous findings on the inverse asso-
ciations of alcohol consumption with obesity and type 
2 diabetes [21], as well as the observations on the posi-
tive association of leucine and isoleucine with incident 
CVD in the present study. BCAAs are nitrogen donors 
for hepatic gluconeogenesis [36]. Our observations may 
support the notion that alcohol consumption, mainly 
moderate consumption, suppresses gluconeogenesis 
via lowering BCAA levels and subsequently controlling 
blood glucose to maintain normoglycemia. Nonethe-
less, future studies with larger sample sizes and diverse 
populations are needed to validate our observations, and 
experimental studies and clinical trials are needed to 
examine the relationships between alcohol consumption, 
BCAA, and CVD risk.

Our observations also highlight the complex rela-
tionship between alcohol consumption and circulating 
metabolites, which was demonstrated by the analysis 
using the two metabolite scores. Our observations sug-
gest that, via circulating metabolites, alcohol drinking 
may have both positive and negative effects on CVD, 
and the two effects seemed to cancel each other out in 
our study samples. However, if certain factors disrupt 
the balance, it is possible that one effect may prevail 
over the other effect and leads to either increased or 
decreased risk of developing CVD. As such, future stud-
ies are warranted to understand what factors may modify 
the association of alcohol consumption and circulating 
metabolites, as well as their impact on the relationship of 
alcohol consumption with CVD development.

We observed that wine consumption and liquor had 
stronger associations with TAG, CE, and SM lipid metab-
olites, while beer had stronger associations with PC lipid 

metabolites. We also found that wine and liquor had dif-
ferent associations with amino acids, quinoline carbox-
ylic acids, and hydroxy acids. Liquor consumption was 
significantly related to higher levels of 3-ureidopropionic 
acid, whereas wine consumption had stronger associa-
tion with betaine, 2-hydroxyglutaric acid, xanthurenate, 
isoleucine, and valine compared to liquor. These obser-
vations suggest that consumption of different types of 
alcoholic beverages are associated with different metabo-
lomic responses. However, the observed associations may 
also be driven by confounders such as unmeasured com-
ponents in different alcoholic beverages or dietary and 
other environmental factors that were not adjusted for in 
the present analysis. Some of these metabolites such as 
betaine and isoleucine [35, 37] may play important roles 
in CVD development. Perhaps due to the short list of 
metabolites examined, the present study did not support 
the notion that a certain type of alcohol may bring spe-
cific benefits to reduce CVD risk. Future studies includ-
ing a comprehensive list of metabolites are warranted to 
investigate this issue.

It was found by van Roekel et  al. that total alcohol 
intake was associated with 34 circulating metabolites, 
including 3 acylcarnitines, the amino acid citrulline, 4 
lysophosphatidylcholines, 13 diacylphosphatidylcholines, 
7 acyl-alkylphosphatidylcholines, and 6 sphingomyelins 
[12] among middle-aged (mean age = 58.3) participants 
in European Prospective Investigation into Cancer and 
Nutrition Cohort. Among the 34 metabolites signifi-
cant in the van Roekel’s study, 13 metabolites were also 
measured by our metabolite platforms, including LPC 
16:0, LPC 16:1, LPC 20:4, PC 32:0, PC 32:1, PC 32:2, PC 
34:1, PC 34:3, PC 34:4, PC-B 36:4, PC 38:6, PC 32:1, and 
SM 24:1. All of the 13 metabolites were significant in our 
analysis for total alcohol consumption (Additional file 7: 
Fig. S7, Additional file 16: Table. S9).

In a cross-sectional analysis, Würtz et  al. examined 
the association of alcohol intake with 76 metabolites 
among young adults (aged 25–45) [38]. In that study, 
36 metabolites were considered significantly associated 
with alcohol consumption. Of these 36 metabolites, 11 
metabolites (glutamine, glycine, alanine, isoleucine, leu-
cine, valine, lactate, pyruvate, glycerol, citrate, and cre-
atinine) were also included in the present study, and 3 of 
11 metabolites (glutamine, glycerol and leucine) reached 
significance using our data (Additional file  17: Table. 
S10). Glutamine and glycerol displayed similar associa-
tion across the two cohorts. Interestingly, compared to 
our findings, the Würtz et al. study showed an opposite 
association between total alcohol consumption and leu-
cine. Leucine is one member of the second metabolite 
score in the present study, which was inversely associated 
with incident CVD. As such, this observation may echo 
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our abovementioned hypothesis that certain unknown 
factor(s) may modify the alcohol–metabolite association 
in different study samples. In addition, six metabolites 
(glutamine, glycine, alanine, isoleucine, leucine, valine) 
were included in all three studies (the Würtz et al. study, 
the van Roekel’s study, and the present study). Four of the 
six common metabolites were significant in our study 
and three of them were significant in Würtz et al.’s study, 
but none of them were significant in van Roekel’s study 
(Additional file 17: Table. S10). Together, these observa-
tions highlight the need for future studies to compre-
hensively investigate the heterogeneity with respect to 
alcohol–metabolite associations in different populations 
using harmonized metabolite panels.

We observed that, for 13 metabolites, their associa-
tion strength with alcohol consumption was stronger in 
women compared to that in men. Women generally have 
smaller body sizes; consuming the same amount of alco-
hol would end up with a higher blood alcohol concentra-
tion for an average woman compared to an average man. 
In addition, women may have greater ethanol clearance 
than men, given the same lean body mass [39]. This may, 
at least partly, explain our observation with respect to 
the stronger metabolite response in women. Whether 
the observed sex–alcohol interaction can be affected by 
other factors, as well as its impact on CVD and clinical 
outcomes, may need future investigations.

Strengths and limitations of the study
Our study had several strengths. The most impor-
tant advantage was that alcohol drinking data from five 
exams across around 20 years were utilized in the current 
study. Our study had several limitations. Because of the 
observational nature of our findings and no experimen-
tal validation, causality cannot be inferred. Despite that 
the sample size in our study was large, the population 
was primarily white, middle-aged participants. There-
fore, the findings from our study may not be generaliz-
able to populations of different races and age groups. As 
shown in Additional file  1: Fig. S1, cumulative average 
consumption is a good proxy for long-term alcohol con-
sumption. However, the analysis using total alcohol con-
sumption at exam 5 yielded a similar alcohol–metabolite 
association. This observation may be driven by the pos-
sibility that many of our study participants maintained 
a low-to-moderate alcohol drinking habit. Future stud-
ies are needed to validate our findings in other popula-
tions with longitudinal alcohol measurements. Alcohol 
consumption was measured by questionnaires and cal-
culated based on standard serving size. This approach 
is cost-effective; however, measurement errors may bias 
the observed association between alcohol intake and 
metabolite levels. We acknowledge that the metabolites 

data analyzed in our study are comprised of a targeted 
panel. Association between alcohol drinking and untar-
geted metabolites remained to be studied. Research 
utilizing metabolite platforms including those from 
exogenous sources, e.g., ethyl glucuronide and derivates 
of resveratrol, are needed to better understand the alco-
hol–metabolite relationship. We observed that sex may 
modify the association between total alcohol consump-
tion and metabolite levels. Several other factors may also 
modify the observed associations. For example, the pres-
ence or absence of food in the stomach can change the 
rate of alcohol absorption and metabolism [40, 41] and 
subsequently affect the association of alcohol consump-
tion with circulating metabolite profiles. In addition, the 
use of average alcohol consumption in the present analy-
sis may not reflect participants’ diverse drinking patterns. 
For example, the information on alcohol consumption 
patterns such as drinking alcohol with or without meals 
or weekend binge drinking was not collected. Partici-
pants’ genetic background is a key factor that may modify 
alcohol metabolism [42], which may need further studies 
with larger sample size.

Conclusions
The present study identified a series of alcohol-associated 
circulating metabolites. Our observations suggest that, 
via some metabolites, alcohol consumption may have 
counteractive effects on CVD. Future studies are required 
to validate our findings and to investigate factors that 
may modify the associations between alcohol consump-
tion and metabolite levels, particularly for metabolites 
that potentially contribute to CVD risk, in larger and 
diverse study samples.
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Additional file 2: Fig. S2. Comparison of Association of Alcohol Con-
sumption and Metabolites with or without Adjusting for eGFR. Panel A: 
comparison of beta; Panel B: comparison of -log10 (p value). Two models 
both were performed adjusting for age, sex, batch, smoking status, BMI, 
physical activity index and diet score as fixed effect, and family relation-
ship as random effect. eGFR, estimated glomerular filtration rate.

Additional file 3: Fig. S3. Comparison with Association of Alcohol Con-
sumption at Exam5 and Metabolites. Panel A: comparison of beta; Panel B: 
comparison of -log10 (p value). Two models both were performed adjust-
ing for age, sex, batch, smoking status, BMI, physical activity index and diet 
score as fixed effect, and family relationship as random effect.

Additional file 4: Fig. S4. Number of Metabolites Significantly Associated 
with Each Type of Alcohol Consumption. Panel A: three type of alcohol 
consumption; Panel B: three type of alcohol consumption and total 
alcohol consumption. All models were performed adjusting for age, sex, 
batch, smoking status, BMI, physical activity index and diet score as fixed 
effect, and family relationship as random effect.

Additional file 5: Fig. S5. Comparison of Association Analyses of Alcohol 
Consumption with Metabolites. Panel A-C, comparison of effect size 
from association analyses of cumulative average total alcohol consump-
tion and each type of alcohol consumption with metabolites. Panel D-F, 
comparison of effect size from association analyses each type of alcohol 
consumption with metabolites. All models were performed adjusting 
for age, sex, batch, smoking status, BMI, physical activity index and diet 
score as fixed effect, and family relationship as random effect. The pairwise 
Pearson correlation coefficients of regression coefficients was 0.61, 0.64, 
and 0.88 for beer vs. wine, beer vs. liquor, and wine vs. liquor.

Additional file 6: Fig. S6. Comparisons between nondrinkers, Moder-
ate drinkers, and heavy drinkers. Values are regression coefficients and 
95% confidence interval calculated using moderate drinkers as reference. 
Models were adjusted for age, sex, batch, smoking status, BMI, physical 
activity index and diet score as fixed effect, and family relationship as 
random effect.

Additional file 7: Fig. S7. Comparison to Roekel’s Study. Panel A: compar-
ison of beta; Panel B: comparison of t value. Only in this analysis, alcohol 
consumption (g/day) in this study was plus 1 and natural log transformed. 
The sex and batch-adjusted residual of metabolites from linear mixed 
model were used as outcome. Then we applied linear mixed model for 
alcohol drinking and residual of metabolites in linear mixed model, adjust-
ing for age, sex, smoking status, BMI, physical activity, diet score as fixed 
effect, and familial relationship as random effect. But Roekel’s study used 
linear model and covariates included age at blood collection, sex, country, 
fasting status at blood collection, smoking status, BMI, Cambridge physical 
activity index, and daily intake of energy, meat and meat products, fish, 
and shellfish.

Additional file 8: Table. S1. Association between Cumulative Average 
Alcohol Consumption and Metabolites. Total, total amount of alcohol con-
sumption; beer, beer consumption; wine, wine consumption; liquor, liquor 
consumption. These alcohol consumptions were average consumption 
across exams 1 to 5. Linear mixed models were performed adjusting for 
age, sex, batch, smoking status, BMI, physical activity index and diet score 
as fixed effect and family relationship as random effect.

Additional file 9: Table. S2. Comparison between Each Type of Cumula-
tive Average Alcohol Consumption and Metabolites. Total, total amount of 
alcohol consumption; beer, beer consumption; wine, wine consumption; 
liquor, liquor consumption. These alcohol consumptions were average 
consumption across exams 1 to 5. Linear mixed models were performed 
adjusting for age, sex, batch, smoking status, BMI, physical activity index 
and diet score as fixed effect and family relationship as random effect.

Additional file 10: Table. S3. Association between Cumulative Average 
Alcohol Consumption and Metabolites by Sex. Linear mixed models were 
performed adjusting for age, batch, smoking status, BMI, physical activity 
index and diet score as fixed effect and family relationship as random 
effect.

Additional file 11: Table. S4. Pathway Analysis Results for 60 Metabolites 
Significantly Associated with Total Alcohol Consumption under KEGG 
Library.

Additional file 12: Table. S5. Pathway Analysis Results for 60 Metabolites 
Significantly Associated with Total Alcohol Consumption under SMPDB 
Library.

Additional file 13: Table. S6. Association between Incident CVD and 
alcohol-related Metabolites. Base models were performed adjusting for 
age, sex and batch. Multivariable models were performed additionally 
adjusting for BMI, SBP, hypertension treatment status, diabetes, smoking 
status, total and high-density lipoprotein cholesterol level.

Additional file 14: Table. S7. Association between Incident CVD 
subtypes and alcohol-related Metabolites. Base models were performed 
adjusting for age, sex and batch. Multivariable models were performed 
additionally adjusting for BMI, SBP, hypertension treatment status, diabe-
tes, smoking status, total and high-density lipoprotein cholesterol level.

Additional file 15: Table. S8. Beta Direction from Association between 
Cumulative Average Alcohol Consumption and Metabolites, Association 
between Incident CVD and alcohol-related Metabolites.

Additional file 16: Table. S9. Comparison to Van Roekel’s Study. Only 
in this analysis, our alcohol consumption (g/day) was plus 1 and natural 
log-transformed. The sex and batch-adjusted residual of metabolites 
from linear mixed model were used as outcome. Linear mixed models 
were performed for alcohol drinking and residual of metabolites in linear 
mixed model, adjusting for age, sex, smoking status, BMI, physical activity, 
diet score as fixed effect, and familial relationship as random effect.  Refer 
to reference 12 for details in Van Roekel’s study.

Additional file 17: Table. S10. Comparison to Würtz’s study. Refer to 
reference 38 for detail statistical analysis in the Wurtz’s study, and signifi-
cant threshold in their study is 0.0016. And reference 12 for details in Van 
Roekel’s study, and FDR p value<0.05 was significance level.
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