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Abstract 

Background Each year, thousands of clinical prediction models are developed to make predictions (e.g. estimated 
risk) to inform individual diagnosis and prognosis in healthcare. However, most are not reliable for use in clinical 
practice.

Main body We discuss how the creation of a prediction model (e.g. using regression or machine learning meth-
ods) is dependent on the sample and size of data used to develop it—were a different sample of the same size used 
from the same overarching population, the developed model could be very different even when the same model 
development methods are used. In other words, for each model created, there exists a multiverse of other poten-
tial models for that sample size and, crucially, an individual’s predicted value (e.g. estimated risk) may vary greatly 
across this multiverse. The more an individual’s prediction varies across the multiverse, the greater the instability. We 
show how small development datasets lead to more different models in the multiverse, often with vastly unstable 
individual predictions, and explain how this can be exposed by using bootstrapping and presenting instability plots. 
We recommend healthcare researchers seek to use large model development datasets to reduce instability concerns. 
This is especially important to ensure reliability across subgroups and improve model fairness in practice.

Conclusions Instability is concerning as an individual’s predicted value is used to guide their counselling, resource 
prioritisation, and clinical decision making. If different samples lead to different models with very different predic-
tions for the same individual, then this should cast doubt into using a particular model for that individual. Therefore, 
visualising, quantifying and reporting the instability in individual-level predictions is essential when proposing a new 
model.

Keywords Clinical prediction model, Instability, Variance, Risk prediction, Bootstrapping, Mean absolute prediction 
error (MAPE)

Background
The multiverse refers to the potentially infinite number of 
other universes besides our own, which may or may not 
be similar. Related concepts are multiple realities, parallel 
worlds, and alternate universes. Although the multiverse 
is hypothetical, it gains growing popularity in science-fic-
tion novels and films such as Spider-Man: Into the Spider-
Verse and Doctor Strange and the Multiverse of Madness.

The idea of an infinite number of different realities 
is reflected in the theory of probability and statistics, 
which acknowledges the variability across random sam-
ples of the same size taken from a particular population. 
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Different samples may lead to different sample estimates 
(e.g. of the proportion of pregnant women diagnosed 
with pre-eclampsia): some samples and estimates may 
be similar to each other, but others very different. The 
smaller the sample size, the more varied and unstable dif-
ferent sample estimates will be [1].

Into the multiverse of prediction models
A multiverse of different samples, and therefore differ-
ent sample estimates, presents a unique challenge for 
research studies developing clinical prediction models to 
inform diagnosis or prognosis for individuals [2]. These 
studies use a sample of data from a chosen target popu-
lation (e.g. women 20  weeks pregnant; men diagnosed 
with prostate cancer) to develop a model for predicting 
an outcome value (e.g. blood pressure) or estimating an 
outcome risk (e.g. 10-year mortality risk) in any indi-
vidual from that target population. The model is created 
using approaches such as regression, random forests or 
deep learning, which map predictor values (features) to 
outcomes (labels) at the individual level. An example is 
the ISARIC model [3], for use in hospitalised adults with 
suspected or confirmed COVID-19 to estimate their risk 
of in-hospital clinical deterioration based on 11 predic-
tors measured at admission.

The creation of a prediction model is dependent on 
the sample and size of data used to develop it—were 
a different sample of the same size used from the same 
overarching population, the developed model might 
look very different (e.g. in terms of included predic-
tors, predictor effects [4], regression equation, tuning 
parameters [5, 6], tree characteristics and splits) even 

when the same model development methods and set 
of candidate predictors are used. Therefore, whenever 
a prediction model is developed for a chosen target 
population, researchers must recognise there exists a 
multiverse of other potential models for the same pre-
diction scenario (Fig.  1). The smaller the sample size, 
the more different the models in the multiverse will be 
and, crucially, the more varied their predicted values 
for the same individual. If the multiverse demonstrates 
large instability in predicted values for an individual, 
this implies that any one particular model is unlikely to 
be fit for purpose for that individual (e.g. to guide clini-
cal decision making) [7]. This issue is rarely considered 
in current clinical prediction model research, as most 
models just provide a single predicted estimate for 
each individual (and any uncertainty of that estimate is 
ignored). It is strongly related to the concept of epis-
temic uncertainty (reducible uncertainty), which refers 
to uncertainty in predictions arising from the model 
production itself [8], rather than aleatoric uncertainty 
(irreducible uncertainty) that refers to residual uncer-
tainty that cannot be explained by the model.

But what if we could examine instability by looking 
into the multiverse of models to see how different their 
predictions are—like the fourteen million, six hundred 
and five realities Dr Strange looked into at the end 
of the film, Avengers Infinity War? In this article, we 
explain how bootstrapping can be used to do this for a 
chosen target population [9–12] and argue that visual-
ising, quantifying and reporting the instability in indi-
vidual-level predictions should always be done during 
model development [13, 14].

Fig. 1 Depiction of the multiverse of clinical prediction models (CPMs) for a chosen target population. Each CPM is developed using the same 
model development method but from a different sample of size n from the target population of interest. After development, the CPM is used 
to make subsequent predictions for individuals. Bold arrows indicate the route that was actually taken, whilst grey arrows represent other 
hypothetical routes that would have been taken had a different dataset of size n been sampled
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Main text
Examining the multiverse using bootstrapping 
and instability plots
Clinical prediction model developers aim to produce 
models that minimise the variance (instability) of pre-
dictions, whilst also minimising bias (errors) of pre-
dictions. However, this ‘bias-variance trade-off ’ does 
not ensure the developed model has low instability in 
the chosen target population, and we can examine this 
using bootstrapping, as follows.

Assume that a prediction model has been developed 
using a particular model development process and set 
of candidate predictors, applied to particular dataset 
obtained from the chosen target population. To exam-
ine the instability of this developed model, a bootstrap-
ping approach can be applied as described in Table  1. 
It resamples the original data to create B different sam-
ples (of the same size), and in each sample a model is 
developed following exactly the same development pro-
cess used to produce the model in the original data. The 
multiverse of B  models can then be compared (e.g. in 
terms of their included predictors) and the variability 
(instability) in predictions can be quantified at the indi-
vidual level, as outlined by Riley and Collins [12]. We 
suggest presenting a prediction instability plot: a scat-
ter of the B predicted values for each individual against 
their predicted value from the original developed 
model, with uncertainty intervals included (e.g. 95% 
using the 2.5th and 97.5th percentiles). The mean abso-
lute prediction error (MAPE) can be calculated for each 
individual [7, 12, 15], which is the mean of the absolute 
difference (‘error’) between the bootstrap model pre-
dictions ( ̂pbi) and the original model prediction ( pi) . 
The variance of the absolute prediction errors might 
also be summarised for each individual.

Applied examples and the impact of sample size 
on instability
To illustrate the concepts of the multiverse and instabil-
ity, we develop prediction models to estimate the risk of 
30-day mortality in individuals diagnosed with an acute 
myocardial infarction (MI). We use the GUSTO-I data-
set [16], which includes 40,830 participants from the 
target population, of which 2851 (7%) died by 30  days. 
To the data, we fitted a logistic regression model with a 
lasso penalty [17], considering eight predictors: sex, age, 
hypertension, hypotension, tachycardia, previous MI, 
ST elevation on ECG and systolic blood pressure. In the 
original data, all eight predictors were retained, and the 
c-statistic was 0.80, with a Nagelkerke  R2 of 0.21 (21% 
explained variation). Of interest is whether this model 
has instability in individual predictions arising from 
epistemic (reducible) uncertainty in the development 
process; in contrast, we are not focused on prediction 
uncertainty due to aleatoric (irreducible) uncertainty (the 
approximately 79% of remaining outcome variability the 
model could not explain).

Applying the bootstrap process of Table  1, we found 
that across 500 models (developed in 500 bootstrap sam-
ples) there was low variability in individual predictions 
(Fig.  2a), with an average MAPE across individuals of 
0.0028 and a largest MAPE of 0.027. As such, the mod-
els in the multiverse all give similar predictions, mean-
ing instability at the individual level is not a concern. 
This gives strong reassurance that the original developed 
model is stable in the target population represented by 
the development dataset. This is expected given the large 
size of this development dataset, with about 356 events 
per predictor parameter, far exceeding the minimum 
sample size of about 7 events per predictor parameter for 
this scenario based on proposed sample size criteria [18].

Table 1 The bootstrap process to examine instability of model predictions in a chosen target population, as adapted from Riley and 
Collins [12]

Using the model development dataset of n participants from the chosen target population, we recommend the following process:

• Step 1: Use the developed model to make predictions ( ̂pi) for each individual participant ( i = 1 to n ) in the development dataset

• Step 2: Generate a bootstrap sample with replacement, of size n

• Step 3: Develop a bootstrap prediction model in the bootstrap sample, replicating exactly (or as far as practically possible) the same model develop-
ment approach and set of candidate predictors as used originally

• Step 4: Use the bootstrap model developed in step 3 to make predictions for each individual ( i) in the original dataset. We refer to these predictions 
as p̂bi , where b indicates which bootstrap sample the model was generated in ( b = 1 to B)

• Step 5: Repeat steps 2 to 4 a total of (B − 1 ) times, and we suggest B is at least 200

• Step 6: Store all the predictions from the B iterations of steps 2 to 5 together in a single dataset, containing for each individual a prediction ( ̂pi) 
from the original model and B predictions ( ̂p1i , p̂2i , . . . , p̂Bi) from the bootstrap models

• Step 7: Summarise the instability in the predictions. In particular, quantify the mean absolute prediction ‘error’ (MAPE) for each individual, and summa-
rise this across individuals, and display a prediction instability plot (scatter of the B predicted values for each individual against their original predicted 
value). Other instability plots (e.g. for classification, clinical utility) and measures may also be useful, as shown elsewhere [12].
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We now assume the available data to develop the model 
is a random sub-sample of the full GUSTO-I dataset 
comprising 500 participants and 35 deaths, and so pro-
vides a substantially smaller sample size. As before, we 
fit a logistic regression model with a lasso penalty, where 
again all eight predictors were retained. The c-statistic is 
marginally higher at 0.82. Researchers might believe this 
model has promise. However, given the large reduction in 
sample size, the corresponding multiverse may have sub-
stantial instability across the bootstrap models and indi-
vidual predictions [18, 19]. This is exposed by applying 
the bootstrap process from Table 1, revealing huge vari-
ability in individual predictions (Fig.  2b). For example, 
an individual with an estimated 30-day mortality risk of 
0.2 from the original model has a wide range of alterna-
tive predictions from about 0 to 0.8 across the multiverse 
(compared to 0.15 to 0.25 across the multiverse of models 
derived from the full sample), potentially reflecting sub-
stantial differences in subsequent clinical decisions and 
treatment choice. Individuals have an average MAPE of 
0.023 and a largest MAPE of 0.14 (compared to 0.0028 
and 0.027, respectively, across the multiverse of models 
derived in the full sample). Hence, despite the apparently 
good discrimination performance, there is large instabil-
ity in predictions for some individuals. This is anticipated 

given there are only about 4 events per predictor param-
eter, much fewer than the minimum of 7 recommended 
by our sample size criteria [18].

Why does instability in individual predictions matter 
in healthcare?
Instability of individual predictions is relevant because, 
within healthcare, model predictions guide individual 
counselling, prioritisation of resources, and clinical deci-
sion making. If different samples lead to models with very 
different predictions for the same individual, then this 
reduces our assurance in using a particular model’s pre-
dictions to inform clinical decisions.

Suppose a model is to be used for classification, like 
when a threshold is used to guide clinical decisions; for 
example, a general practitioner might consider prescrib-
ing a statin to an individual if their estimated cardiovas-
cular disease risk is at least 0.1 [20]. An individual enters 
a multiverse of madness if the developed model (based 
on a particular sample) suggests their risk is > 10%, but 
a large proportion of other models from the multiverse 
(each based on a different sample from the same popula-
tion) suggests their risk is < 10%. This can be quantified 
using the classification instability index, which estimates 
an individual’s probability that their prediction (from the 

Fig. 2 Prediction instability plot for a logistic regression model (with a lasso penalty) considering 8 predictors fitted in a the full sample 
of 40,830 participants (2851 deaths) and b a sub-sample of 500 participants (35 deaths). The solid diagonal line indicates perfect agreement 
between the predictions from the developed model and predictions in the bootstrap model. The vertical spread of points indicates the instability 
in the multiverse, reflecting differences in an individual’s prediction from the developed model (our universe) and their prediction in other 
hypothetical models (other universes). The dashed lines denote the 2.5th and 97.5th percentiles of the distribution
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original model) leads to a different classification to those 
from the bootstrap models. Figure 3 shows the classifica-
tion instability index for the previous models based on a 
risk threshold of 0.1. In the full dataset, the index is small 
except for individuals with predictions from the original 
model very close to the 0.1 threshold. However, when the 
development sample size is 500 participants, the classifi-
cation instability index is larger; for example, some indi-
viduals with an original prediction of 0.2 have about a 
15-20% chance of being classified below the threshold in 
a different model. This might flag concern about using 
the original developed model to make classifications in 
individuals.

Some instability is inevitable and needs to be viewed in 
context of the problem at hand: is the aim of the model 
to improve population-level outcomes as a whole, or to 
ensure the best shared decision making for each indi-
vidual? In other words, do we care which individuals the 
model predicts accurately in, or do we want to ensure that 
the model predictions are accurate in every subgroup of 
individuals (e.g. defined by one or more characteristics)? 
This relates to the hierarchy of prediction model calibra-
tion proposed by Van Calster et al.; [21] a model’s predic-
tions may be well calibrated at the population level, but 
not well calibrated when broken down into more refined 
groupings. Indeed, the latter may be a utopia that is very 
difficult to achieve unless data are enormous.

A model may still have benefit even with instability at 
the individual level. For instance, instability in regions of 
very high risk (e.g. reflected by uncertainty intervals from 
0.3 to 1) may not matter if clinical decision thresholds 
are much lower (e.g. 0.05 to 0.1). Similarly, the decision 
to prescribe statins to those with an estimated 10-year 
cardiovascular disease (CVD) risk > 10% may still reduce 
the CVD rate in the UK population as a whole [22], even 
with instability at the individual level. This can be gauged 
by examining stability in a model’s overall clinical util-
ity [12], for example using net benefit [23]. Nevertheless, 
we should still strive for stability at the individual level, 
as most healthcare consultations aim to improve indi-
vidual-level outcomes and so models ideally need to sup-
port this. An example is injury prediction in elite sports 
players, where the goal is to improve outcomes for each 
individual player [24], not the population of elite sports 
players per se.

Instability of individual predictions and impact 
on discrimination
Individual predictions may be unstable even when there 
is stability in a model’s discrimination performance, 
which measures the separation in estimated risks for 
those with and without the outcome event. In particular, 
the c-statistic measures the proportion of all pairs (one 
patient with the outcome event, one patient without the 
outcome event) where the model estimates a higher risk 

Fig. 3 Classification instability plot for logistic regression models with a lasso penalty considering 8 predictors and a risk threshold of 0.1
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for the patient with the outcome event. In our aforemen-
tioned model developed using 500 participants, applying 
each bootstrap model to the original sample, 95% of the 
c-statistic estimates range from 0.77 to 0.82. Thus, the 
c-statistic appears quite stable in the multiverse, despite 
the aforementioned huge instability in individual-level 
predictions. This is because the c-statistic is a summary 
measure based on all individuals, so is less vulnerable to 
instability concerns at the individual level.

Instability of individual predictions and impact 
on calibration
Calibration measures the agreement between observed 
and estimated risks [25]. A model’s estimated risks are 
more likely to be miscalibrated in the chosen target 
population when there is large individual-level insta-
bility [6]. This can be exposed by fitting smoothed cali-
bration curves for the bootstrap models applied in the 
original dataset. These curves can be overlayed together 
on the same graph to form a calibration instability plot. 
Large variability (instability) in the curves raises a con-
cern that the model predictions will be miscalibrated 
in the target population. Figure  4 shows the calibration 
instability plot for the models developed in the full and 
small datasets. There is very little variability in curves for 

models developed in the full dataset, but large variability 
in curves for models developed in the small dataset.

Do instability concerns apply to AI or machine learning 
methods?
The potential issue of instability applies irrespective of the 
underlying modelling approach, including those ascribed 
to AI or  machine learning such as ensemble methods. 
Ensemble methods already recognise the multiverse by 
averaging predictions over multiple models in the mul-
tiverse, in order to reduce bias and variability (instabil-
ity) based on any one model alone. For example, random 
forests are an ensemble method that uses bagging (boot-
strap aggregating) to develop multiple forests from multi-
ple bootstrap samples and then average predictions over 
them. Another example is stacking, also known as super 
learners, which average predictions across multiple mod-
els fitted to the same development dataset. Often the set 
of models used are deliberately diverse (e.g. in their for-
mat and set of considered predictors).

Although such ensemble methods are designed to 
reduce instability, they do not alleviate it. Similarly, pop-
ular methods for penalised regression (e.g. lasso, elas-
tic net, ridge regression) can be very unstable (e.g. see 
Fig. 2b), even though they are designed to improve mod-
els in situations with high variance (instability) that arise 

Fig. 4 Calibration instability plot for a logistic regression model (with a lasso penalty) considering 8 predictors fitted in a the full sample of 40,830 
participants (2851 deaths) and b a sub-sample of 500 participants (35 deaths). The solid diagonal line indicates ideal calibration. The dashed line 
indicates the calibration curve of the original model in the original sample. Others are the calibration curves of 200 bootstrap models applied 
in the original sample
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in small samples and large numbers of predictor parame-
ters [6, 26, 27]. For example, Riley and Collins show insta-
bility of models developed using penalised regression 
and random forests [12], and demonstrate how instabil-
ity may depend heavily on the model tuning process (e.g. 
selecting the number and depth of trees), and increases 
with the use of data splitting into training and test sam-
ples. Ultimately, all methods are limited by the available 
sample size for model development, unless strong exter-
nal information is also incorporated (e.g. via informative 
prior distributions in a Bayesian framework)—though in 
practice this is rarely done.

Addressing instability in the multiverse by targeting larger 
sample sizes
Development datasets with small sample sizes lead to 
unreliable individual-level predictions from unstable 
models, caused by uncertainty in the model (e.g. regres-
sion equation, tree structure). Therefore, to improve sta-
bility when developing a new model, researchers should 
seek to reduce model uncertainty by adhering to mini-
mum sample size requirements that (i) aim to precisely 
estimate the overall risk or mean value in the population 
and (ii) target a small amount of model overfitting [18, 19, 
28]. Even then, the instability may be quite pronounced, 
and substantially larger datasets may be required to suf-
ficiently negate instability concerns for all individuals [7]. 
Sample size criteria based on precisely estimating predic-
tor effects and targeting low MAPE values (e.g. < 0.02) 
can help address this [15, 18, 19, 28].

In a situation where participants are still being 
recruited into a model development study, learning 
curves may help identify when additional data are needed 
to reduce current instability levels, for example as identi-
fied by instability plots and measures such as MAPE [29], 
or low effective sample sizes for individuals [30]. If fur-
ther recruitment is not possible and instability is large, it 
may simply not be sensible to proceed with model devel-
opment unless external information (e.g. about predictor 
effects, tuning parameters) can be borrowed or a differ-
ent, more stable model development approach chosen.

Instability checks are important for model fairness 
and model comparisons
Instability checks can also be used to inform investi-
gations of model reliability in different types of par-
ticipants, for example by checking MAPE in subgroups 
defined by ethnicity [12]. There may be more instability 
in some groups than others, especially for those with a 
small sample size (e.g. due to being underrepresented or 
having rare characteristics), and ultimately this may lead 

to concerns about a model’s fairness if used in practice. 
Instability checks also help compare competing models, 
or even model development strategies. For example, if 
models A and B have similar c-statistics and clinical util-
ity, but model A has greater stability in individual predic-
tions, then it makes sense to use model A.

Are there limitations with the bootstrap approach?
It is important that the bootstrap process mimics, as 
closely as possible, the steps taken to develop the pre-
diction model, so that the instability in the model devel-
opment process is fully captured. This includes any 
approaches for data splitting, variable selection, miss-
ing data handling and model tuning. We appreciate 
this may be computationally intensive, even more so 
for deep learning methods. The quality of the bootstrap 
process in reflecting the instability in the target popula-
tion is also dependent on the representativeness of the 
development sample for the target population (e.g. in 
case-mix variation, the intended moment of prediction 
and measurement of predictors and outcomes) [31]. 
Bootstrap samples taken from small and non-repre-
sentative samples may underestimate the actual insta-
bility in the underlying population. Further, evaluations 
in other  populations require external validation in new 
data, with sufficient sample size [32–34], sampled from 
those other populations.

Might the multiverse be even more diverse?
So far, we have focused on instability in a multiverse of 
models that are all developed using the same develop-
ment approach on the same set of predictors. This is akin 
to what might happen if we placed the original research-
ers into each universe, and ensured they develop models 
using the same protocol, analysis plan, modelling strat-
egy, set of candidate predictors and so forth. However, 
the multiverse would be even more diverse if we allowed 
there to be additional uncertainty due to researcher 
(modeller) preferences, for example in regard to their 
choice of modelling strategy (e.g. lasso, elastic net, ran-
dom forest or super learners), methods for handling 
missing data and sets of candidate predictors. Research-
ers could examine this by extending the proposed boot-
strap process to allow Step 3 to randomly select from a 
range of other plausible modelling choices, but usually 
this is not necessary or informative.

Lastly, note that we focused on instability of a devel-
oped model for one chosen target population. Considera-
tion of different  (other) target populations (e.g. different 
settings, countries) is about generalisability and trans-
portability [35], rather than instability of the developed 
model for the originally intended target population.
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Conclusions

“The Multiverse is a concept about which we know 
frighteningly little”
Dr. Strange (Spider-Man: No Way Home)

Whenever researchers develop a clinical prediction 
model using a particular dataset and model development 
approach, we recommend they use bootstrapping to 
investigate the corresponding multiverse of models and 
instability of individual predictions. They should report 
their findings in terms of MAPE and instability plots (e.g. 
for prediction, classification and calibration), as these add 
extra information over established performance metrics 
like  R2, c-statistic, calibration-in-the-large, calibration 
slope and net benefit. Clear reporting of instability will 
help expose whether a model’s predictions are likely reli-
able at the individual level; enable more informed judge-
ments about the model’s quality (risk of bias [36]) in the 
context of its potential use; identify whether larger devel-
opment datasets (or external information) are needed to 
reduce instability; motivate the use of alternative mod-
elling approaches that improve stability (e.g. better tun-
ing approaches such as repeated rather than single cross 
validation; exclusion of a few predictors that especially 
inflate instability); and reveal the need for further vali-
dation studies. It may also motivate approaches to take 
forward the uncertainty in a model’s prediction (e.g. via 
a predictive distribution from a Bayesian analysis), rather 
than just using a single predicted estimate for an indi-
vidual. The forthcoming TRIPOD + AI guideline includes 
recommendations for reporting any assessment to exam-
ine model instability in recognition of its importance and 
impact on using model prediction to guide decision mak-
ing [37]. Example code for examining stability is available 
at www. progn osisr esear ch. com/ softw are, and stability 
plots are an option within the pminternal R package [38].
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