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Abstract 

Background A previously trained deep learning-based smartphone app provides an artificial intelligence solution 
to help diagnose biliary atresia from sonographic gallbladder images, but it might be impractical to launch it in real 
clinical settings. This study aimed to redevelop a new model using original sonographic images and their derived 
smartphone photos and then test the new model’s performance in assisting radiologists with different experiences 
to detect biliary atresia in real-world mimic settings.

Methods A new model was first trained retrospectively using 3659 original sonographic gallbladder images 
and their derived 51,226 smartphone photos and tested on 11,410 external validation smartphone photos. Afterward, 
the new model was tested in 333 prospectively collected sonographic gallbladder videos from 207 infants by 14 inex-
perienced radiologists (9 juniors and 5 seniors) and 4 experienced pediatric radiologists in real-world mimic settings. 
Diagnostic performance was expressed as the area under the receiver operating characteristic curve (AUC).

Results The new model outperformed the previously published model in diagnosing BA on the external validation 
set (AUC 0.924 vs 0.908, P = 0.004) with higher consistency (kappa value 0.708 vs 0.609). When tested in real-world 
mimic settings using 333 sonographic gallbladder videos, the new model performed comparable to experienced 
pediatric radiologists (average AUC 0.860 vs 0.876) and outperformed junior radiologists (average AUC 0.838 vs 0.773) 
and senior radiologists (average AUC 0.829 vs 0.749). Furthermore, the new model could aid both junior and senior 
radiologists to improve their diagnostic performances, with the average AUC increasing from 0.773 to 0.835 for junior 
radiologists and from 0.749 to 0.805 for senior radiologists.

Conclusions The interpretable app-based model showed robust and satisfactory performance in diagnosing biliary 
atresia, and it could aid radiologists with limited experiences to improve their diagnostic performances in real-world 
mimic settings.
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Background
Biliary atresia (BA) is one of the most serious infantile 
cholestatic disease, which can lead to end-stage liver fail-
ure or even death without timely diagnosis and surgical 
treatment [1, 2]. Reliable detection of patients with BA in 
the early stage is the key to good prognosis [2, 3]. Rou-
tine clinical diagnosis of BA among suspected infants 
depends on ultrasound (US) examination [4–15]. Gall-
bladder morphology is one of the two most helpful US 
features (the other is triangular cord thickness) in the 
detection of BA [1, 4–6, 12, 16, 17], with sensitivity and 
specificity higher than 90% [12] in experienced hands. 
However, due to the fact that BA is a rare disease, there 
is a lack of experts who are good at US diagnosis of BA, 
and it is a subjective task to accurately identify abnormal 
gallbladders for many radiologists who are in primary 
hospitals and lack experience in the diagnosis of BA with 
US examination.

Recently, an ensemble deep learning model for the 
artificial intelligence (AI) diagnosis of BA was developed 
based on US gallbladder images and yielded expert-level 
performances [18]. However, for the protection of medi-
cal data and machines, the vast majority of US machines 
in hospitals are not connected to the Internet. Conse-
quently, it makes the application of the deep learning 
model a time-consuming task due to the fact that origi-
nal US gallbladder images should first be extracted from 
the US machine system. As a result, it will greatly weaken 
the radiologists’ willingness to use the model in real clini-
cal settings. In order to simplify the application process, 
the ensemble deep learning model was further structured 
into a smartphone app [18], which may potentially pro-
vide assistance to radiologists who lack experience in the 
diagnosis of BA even in underdeveloped regions without 
robust internet infrastructure.

However, the previously published model was trained 
not with smartphone photos of gallbladder images but 
with original US gallbladder images. The image qual-
ity of smartphone photos would be inevitably affected 
by the imaging process, such as noise inclusion or shape 
and texture deformation [18, 19]. The introduction of test 
noise during the photo taking process poses several chal-
lenges to the stability of the app’s performance, resulting 
in significant drops in the accuracy and consistency of 
the app when tested in the real world [20]. New training 
strategies with more samples are needed to improve the 
generalization of the smartphone app model. Also, with-
out interpretable outputs, the previous app-based model 
might not be trusted by radiologists [21].

In addition, it is necessary to validate this smartphone 
app in real-world mimic settings with various test noise 
levels or ambient interference presented. In clinical prac-
tice, radiologists would rather scan the whole gallbladder 
dynamically than observe a single frame of gallbladder 
images in the diagnosis of BA. Even if the AI approach 
affords high-performance, real world decisions should 
be supervised by radiologists for the reasons of safety 
and accountability. It should be investigated whether an 
AI   assisted model can help radiologists with different 
experiences improve the diagnostic performance of BA 
in real-world settings.

In this study, we first retrain an interpretable AI-based 
app model using the original US gallbladder images and 
their smartphone photos to diagnose BA. Afterwards, we 
investigated whether radiologists with different experi-
ences could improve their diagnostic performance with 
the assistance of the interpretable AI-based app in real-
world mimic settings.

Methods
This study was approved by the Research Ethics Com-
mittee of the First Affiliated Hospital of Sun Yat sen Uni-
versity. Written informed parental consent was obtained 
before prospectively collecting the US gallbladder 
images and videos from each infant. This study followed 
the Standards for Reporting of Diagnostic Accuracy 
(STARD) guidelines for diagnostic studies and the check-
list for artificial intelligence in medical imaging by Mon-
gan 2020 [22].

Study sample for model training and external evaluation
In the first part of this study, a new model was trained 
with both original US gallbladder images and smart-
phone photos of US gallbladder images. The initial data 
set consisted of 4474 original US gallbladder images from 
1396 infants derived from a previous study [18], includ-
ing 3659 images in the training set and 815 images in 
the external validation set. More details about the data-
set were provided in Additional file  1: Method S1. The 
ground truth label of each image was obtained based on 
the reference tests for the infant: intraoperative cholan-
giography, surgical exploration, or jaundice-free after fol-
low-up. Seven radiologists were recruited to take photos 
of original US gallbladder images with different types of 
smartphones (Additional file  1: Table  S1). The require-
ments for taking photos with a smartphone are shown 
in Additional file 1: Method S2. Each radiologist took 2 
rounds of photos with a 1-month interval in between, 
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generating a total of 62,636 smartphone photos. A set 
comprising 3659 original US images and 51,226 corre-
sponding smartphone photos was used to train the new 
model. The rest of the 11,410 smartphone photos were 
used to test the new model (Fig. 1, Part I).

New model equipped in the new smartphone app
In the first part of this study, a deep convolutional neu-
ral network (Se-ResNet-152) [23] was adopted as the 
architecture of the model. Firstly, we defined a rectan-
gular region of interest covering the gallbladder on the 
US image to eliminate the interference of irrelevant 
information from the non-gallbladder areas. Several 

data augmentation techniques were subsequently imple-
mented on the training dataset, including RandomRe-
sizedCrop, RandomHorizontalFlip, and ColorJitter. Then, 
a fivefold cross-validation method was used to build an 
ensemble model for the diagnosis of BA (Fig.  2). The 
ensemble model would output a binary predictive diag-
nosis (BA or non-BA) for each test image. More details 
about data pre-processing and model training can be 
found in Additional file  1: Method S3 and Method S4, 
respectively.

Previously, only the predicted diagnosis was presented 
in the output interface of the smartphone app [18]. In 
order to increase the transparency of the smartphone 

Fig. 1 Flow diagram of the inclusion criteria for the study sample
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app, the predicted probability and the heatmap produced 
by the class activation mapping (CAM) trials [24] of the 
model were presented along with the predicted diagnosis 
in this study (Fig. 2).

Patients in real‑world mimic settings
In the second part of this study, the new smartphone app 
model was tested in real-world mimic settings. Between 
July 2019 and August 2021, a total of 182 infants with 
jaundice were prospectively enrolled at the First Affiliated 
Hospital of Sun Yat sen University. The inclusion criteria 
for infants were as follows: (1) infants were younger than 
1 year old with conjugated hyperbilirubinemia, which was 
defined as the serum direct bilirubin level > 17.1 μmol/L 
and the ratio of direct to total bilirubin level > 20% [25]; 
(2) BA could not be ruled out based on their symptoms 
and signs; and (3) US gallbladder images of infants were 
never used for model training. Infants who were unable 
to cooperate with the US examination or whose gallblad-
der was not detected by the high-frequency US trans-
ducer were excluded. All included infants had definite 

final diagnoses of BA or non-BA, which were confirmed 
by surgical exploration, intraoperative cholangiography, 
or follow-up. Sixty-seven infants from other 6 hospitals 
were also prospectively enrolled from January 2020 to 
January 2023 for the robustness evaluation of the new 
model. The 6 participating hospitals can be found in 
Additional file  1: Method S5. Forty-two patients were 
excluded for the following reasons: (1) final diagnosis was 
unclear (n = 29), (2) gallbladder could not be detected by 
US (n = 10), and (3) infants with gallstone (n = 3). Finally, 
207 infants were included in this study (Fig.  1, Part II). 
More details about the sample size calculation are pro-
vided in Additional file 1: Method S6.

Sonographic gallbladder video acquirement
Radiologists (> 10  years of experience with abdominal 
US) from different hospitals recorded all gallbladder vid-
eos. Infants were not fed for at least 2  h before the US 
examination and were kept quiet by feeding during the 
examination. The scan procedure was the same as those 
previously reported [6, 26], with the additional step to 

Fig. 2 Study profile on the new smartphone app trained with original sonographic gallbladder images and smartphone photos taken by seven 
radiologists. Seven radiologists used smartphones to take pictures of the original sonographic gallbladder images. Smartphone photos were 
preprocessed before being inputted into the model for training. Through the fivefold cross-validation method, the new model was trained 
and finally outputted the predictions and probabilities for the test images. The optimized smartphone app outputted both the heatmap 
and the prediction probability at the same time
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store the dynamic gallbladder videos. More details about 
the acquisition requirements for US gallbladder videos 
can be seen in Additional file 1: Method S7. Two exam-
ples of qualified US gallbladder videos were also pre-
sented in the supplementary material (Additional file  2: 
Video S1 and Additional file  3: Video S2). Two differ-
ent linear array transducers (SL10-2 and SL15-4) from 
the same US equipment (SuperSonic Imagine, Aix-en-
Provence, France) were used to generate the US images 
in the First Affiliated Hospital of Sun Yat sen University. 
For each infant, only one video generated by each trans-
ducer was reserved for analysis. Therefore, there would 
be 2 gallbladder videos obtained from two different lin-
ear array transducers for each infant from this center. 
Infants from the other six hospitals were examined with 
the following US scanners: LOGIQ E8, E9, and E20 (GE); 
Resona 7OB (Mindray); EPIQ 5 and EPIQ7 (Philips); 
and Aixplorer (SuperSonic Imagine). All gallbladder 
videos were obtained with high-frequency transducers 
(> 10 MHz).

Twenty-one videos with poor imaging quality (severe 
motion artifacts or refraction artifacts) were excluded 
after screening by a junior researcher (W.Y.Z., with 
3  years of experience with pediatric abdominal US). 
Finally, 333 gallbladder videos from 207 infants were 
obtained as the test data.

Testing in real‑world mimic settings
A total of 18 radiologists, including 9 junior radiolo-
gists (1–2  years of experience in abdominal US), 5 sen-
ior radiologists (> 10  years of experience in abdominal 
US), and 4 experienced pediatric radiologists (> 5  years 
of experience in pediatric US), were recruited to review 
the gallbladder videos and make diagnoses indepen-
dently (Fig. 3). Among them, 9 junior radiologists and 5 
senior radiologists were recruited from the First Affili-
ated Hospital of Sun Yat sen University, and 4 experienced 
pediatric radiologists were recruited from Guangdong 
Women and Children’s Hospital and Shenzhen Children’s 
Hospital. Except for the 4 experienced pediatric radiolo-
gists, other radiologists lacked experience in diagnosing 
BA with real-time US before participating in this study. 
Before starting to read any images or videos, those inex-
perienced radiologists would be briefed on the features 
of normal (indicated non-BA) and abnormal (indicated 
BA) US gallbladders with numbers of typical image and 
video examples displayed simultaneously. An abnormal 
gallbladder was defined as one of the following [5, 6, 
11, 27, 28]: filled gallbladder lumen less than 1.5  cm in 
length; the gallbladder lacks a smooth echogenic mucosal 
lining and has indistinct walls and irregular/lobular con-
tour (Additional file  1: Fig. S1). Each video without any 
patient identity information was presented in a random 

Fig. 3 The diagnostic process for radiologists alone, smartphone app alone, and radiologists with smartphone app’s assistance in diagnosing 
biliary atresia based on 333 prospectively collected sonographic gallbladder videos. Eighteen radiologists with different experiences made 
the initial diagnosis by watching the sonographic gallbladder video independently. Then, radiologists used the smartphone app to take pictures 
of the gallbladder images and obtained the diagnosis of the model. Through the combination of their own knowledge and the diagnosis provided 
by the smartphone app, radiologists made the final diagnosis
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order. All these 18 radiologists have not read any of the 
patient’s images or videos before attending this study and 
were blinded to any other patient’s information during 
their diagnoses. The laptops they used to play the videos 
and the smartphones they used to take photos are listed 
in Additional file 1: Table S2.

In this part, a three-step diagnostic process was con-
ducted to evaluate the performance of the new model in 
assisting radiologists in diagnosing BA (Fig.  3). Firstly, 
each radiologist reviewed the dynamic gallbladder video 
alone and obtained the initial independent diagno-
sis (hereafter, initial diagnosis). In the process of inde-
pendent diagnosis, radiologists could watch the videos 
repeatedly. Secondly, each radiologist selected the best 
single-frame gallbladder image from the video, took a 
picture with the smartphone app, sent it to the model for 
AI diagnosis, and recorded the reference diagnosis given 
by the app (hereafter, AI diagnosis). Finally, based on the 
reference diagnosis provided by the smartphone app, the 
radiologists chose to adhere to their initial diagnosis or 
adopt the diagnosis from the smartphone app as the final 
diagnosis (hereafter, final diagnosis). The initial diagnosis, 
AI diagnosis, and final assisted diagnosis were recorded.

In order to explore the changes in radiologists’ diagnos-
tic confidence with or without the aid of the smartphone 
app, 4-scale self-confidence should be given by each radi-
ologist for the initial and final diagnosis, with “1” to “4,” 
representing “definitely non-BA,” “probably non-BA,” 
“probably BA,” and “definitely BA,” respectively.

Statistical analysis
The continuous variables were first tested for normality 
using a Kolmogorov–Smirnov test. Differences between 
the BA group and the non-BA group were compared 
using the t test for normally distributed variables, the 
Wilcoxon rank test for skewed variables, and the chi-
squared test for categorical variables. The diagnostic per-
formance was expressed as the area under the receiver 
operating characteristic curve (AUC). Differences 
between various AUCs were compared using a Delong 
test (single comparison) or paired T-test (multiple com-
parisons). Fleiss’ multirater kappa was used to assess 
the agreement of binary classification results between 
multiple diagnoses. The agreement was graded as fol-
lows: poor (κ < 0.20), moderate (κ = 0.20 to < 0.40), fair 
(κ = 0.40 to < 0.60), good (κ = 0.60 to < 0.80), or very good 
(κ = 0.80–1.00). The AUC of the radiologists alone was 
used for two comparisons (radiologist alone vs model, 
radiologist alone vs AI-assisted radiologist). Therefore, a 
Bonferroni correction was performed to lower the sig-
nificance threshold to 0.025. For the other comparisons, 
P < 0.05 was considered a statistically significant differ-
ence. All statistical tests were two-sided. The analyses 

were performed with the MedCalc Statistical Software 
version 15.2.2 (MedCalc) and SPSS software package ver-
sion 25 (IBM).

Results
External validation of the new model
In the first part of this study, the new model yielded an 
average sensitivity (recall) of 83.3% [95% confidence 
interval (CI) 82.0–84.7%] and an average precision of 
69.2% (95% CI 65.5–72.8%), while the previous published 
model yielded an average sensitivity (recall) of 70.4% 
(95% CI 64.7–76.1%) and an average precision of 74.7% 
(95% CI 72.4–77.0%) (Additional file  1: Fig. S2). The 
diagnostic performance of the new model [average AUC 
0.924 (95% CI 0.918–0.930)] was better than that of the 
previous published model [average AUC 0.908 (95% CI 
0.896–0.920)] (P = 0.004) in diagnosing BA on the new 
external test set. When tested on seven batches of smart-
phone photos taken by seven radiologists in the first 
round, the kappa value of the new smartphone app model 
was 0.708, the agreement of which was more satisfactory 
than that of the previous one (kappa value 0.609).

Clinical characteristics of patients in real‑world mimic 
settings test
There were 119 infants with BA and 88 infants with-
out BA in the clinical test cohort. Among the 88 infants 
without BA, 2 were diagnosed with congenital biliary 
dilatation, 2 were diagnosed as neonatal intrahepatic 
cholestasis caused by citrin deficiency, 1 was diagnosed 
with neonatal hemolysis, and the remaining 83 were 
diagnosed with neonatal hepatitis syndrome. Of the 333 
videos included prospectively in the second part, 189 
videos belonged to 119 infants with BA and 144 videos 
belonged to 88 infants with non-BA. No significant dif-
ferences were observed between the BA group and the 
non-BA group in terms of sex, age, and total bilirubin 
levels (all P > 0.05), but there were differences in terms 
of direct bilirubin levels (P < 0.001), alanine aminotrans-
ferase levels (P = 0.002), aspartate aminotransferase levels 
(P = 0.002), and γ-glutamyltransferase levels (P < 0.001) 
(Table 1).

Testing in real‑world mimic settings
The average AUCs of radiologists’ initial diagnosis were 
0.773 (95% CI 0.734–0.812) for 9 junior radiologists 
(Table  2), 0.749 (95% CI 0.669–0.828) for 5 senior radi-
ologists (Table  3), and 0.876 (95% CI 0.830–0.922) for 
4 experienced pediatric radiologists (Table  4). When 
tested with smartphone photos of US gallbladder images 
taken by the above radiologists, the average AUC of the 
new smartphone app model was 0.838 (95% CI 0.827–
0.850) by junior radiologists (Table  2), 0.829 (95% CI 
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0.784–0.875) by senior radiologists (Table  3), and 0.860 
(95% CI 0.7950.924) by experienced pediatric radiologists 
(Table 4). The AUC achieved by the new model was com-
parable to that of 3 of 4 experienced pediatric radiologists 
(P < 0.025 for 1 of 4 experienced pediatric radiologists, 
Table 4) and significantly better than that of most inexpe-
rienced radiologists alone (P < 0.025 for 10 of the 14 radi-
ologists) (Tables 2 and 3). Furthermore, the kappa value 
of this smartphone app model was 0.707 (good) across 18 
tests.

With the app’s assistance, the average AUC of 9 jun-
ior radiologists was improved from 0.773 to 0.835. The 
improvement in AUCs for junior radiologists ranged 
from 0.007 to 0.143 (median 0.055). The average AUC of 
5 senior radiologists was improved from 0.749 to 0.805. 
The improvement in AUCs for senior radiologists ranged 
from 0.014 to 0.140 (median 0.039). The AUCs of these 
14 inexperienced radiologists all improved with the 
app’s assistance, and 9 of them were statistically different 
(Tables 2 and 3, Fig. 4, and Additional file 1: Fig. S3). Of 
note, 7 junior radiologists (Table 2, radiologist A, B, D, E, 
and G–I) and 2 senior radiologists (Table 3, radiologist L 
and N) had improved diagnostic sensitivity and specific-
ity with smartphone app assistance.

Only one experienced pediatric radiologist had an 
increase in AUC with the help of the model (radiologist 
R, AUC improved from 0.878 to 0.882), while the other 
three experienced pediatric radiologists’ AUCs decreased 
slightly, although no statistical difference was observed 
(Table 4, all P > 0.025).

In particular, there were 8.4% videos (28/333) in which 
the non-gallbladder was mistakenly regarded as gallblad-
der by some radiologists (Fig.  5), of which 13 belonged 

to BA and 15 belonged to non-BA. Those non-gallblad-
der structures contained the hepato-intestinal space, 
blood vessels, or gut. In these cases, the model was more 
inclined to diagnose BA (68.0%, 66/97 times). Junior 
radiologists (81 times/9 radiologists) were more likely 
to regard non-gallbladder structures as gallbladder than 
senior radiologists (16 times/5 radiologists) (P < 0.001).

Changes in diagnosis confidence with the assistance 
of the smartphone app
The change in diagnostic confidence for each radiologist 
was presented separately in Additional file  1: Table  S3, 
while the change in confidence in the number of diagno-
ses for radiologists with different experiences is summa-
rized in Fig. 6.

The percentages of cases with changes in diagnos-
tic confidence before and after the app’s assistance 
were 42.1% (1261/2997) for junior radiologists, 22.6% 
(377/1665) for senior radiologists, and 6.9% (92/1332) for 
experienced pediatric radiologists. With the assistance 
of the app, the diagnostic confidence of most radiolo-
gists had been improved in the final diagnosis, especially 
junior radiologists (Additional file  1: Table  S3). In the 
BA cohort, the percentages of infants with a change 
from wrong initial diagnosis “1, 2” to correct final diag-
nosis “3, 4” were 51.5% (154/299) of junior radiologists, 
45.9% (94/206) of senior radiologists, and 6.5% (6/92) of 
experienced pediatric radiologists. On the other hand, 
the model could also help radiologists correctly identify 
some non-BA infants who were initially misdiagnosed as 
BA (from “3, 4” to “1, 2”), and the percentages of infants 
with this change were 41.8% (151/361) of junior radi-
ologists, 23.4% (48/205) of senior radiologists, and 5.5% 
(4/73) of experienced pediatric radiologists.

Notably, many patients were correctly converted from 
“probably” to “definitely” by junior radiologists, senior 
radiologists, and even experienced pediatric radiologists, 
of whom their initial diagnosis was correct, as “3” was 
mostly converted to “4” in the BA cohort, while “2” was 
mostly converted to “1” in the non-BA cohort (Fig. 6).

However, it must be acknowledged that this model may 
also mislead the radiologists in missing the diagnosis of 
BA. In the BA group, the percentage of cases with con-
version from “3, 4” to “1, 2” was 3.2% (45/1402) of jun-
ior radiologists, 3.1% (23/739) of senior radiologists, and 
1.1% (7/664) of experienced pediatric radiologists.

Discussion
In this study, we redeveloped a deep learning-based 
smartphone app model with new strategies and expanded 
samples. The results showed the new model outper-
formed the previous published one (AUC 0.924 vs 0.908, 
P = 0.004) with higher consistency (kappa value of the 

Table 1 Patient characteristics at the time of ultrasound 
examination

BA Biliary atresia, TB Total bilirubin, DB Direct bilirubin, ALT Indicates alanine 
aminotransferase, AST Aspartate aminotransferase, GGT  γ-glutamyl transferase
a Data are numbers of patients. The chi-square test was used to test the sex 
distribution between the two groups
b Data are medians with interquartile ranges reported in parentheses. The 
Mann–Whitney U test was used to compare the variables between the two 
groups

Characteristics BA group 
(n = 119)

Non‑BA group 
(n = 88)

P value

Male-to-female 
 ratioa

60:59 53:35 0.16

Age (days)b 53 (40, 68) 50 (33, 76) 0.73

TB (mmol/L)b 151.5 (125.0, 194.9) 142.1 (99.2, 204.4) 0.37

DB (mmol/L)b 98.1 (75.8, 128.2) 66.0 (25.2, 103.6)  < 0.001

ALT (U/L)b 133.0 (70.0, 249.0) 73.0 (26.0, 177.0) 0.002

AST (U/L)b 201.0 (128.0, 331.0) 101.0 (47.0, 240.0) 0.002

GGT (U/L)b 377.0 (269.0, 687.0) 144.0 (80.3, 231.0)  < 0.001
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new model 0.708 vs the old model 0.609). In addition, the 
diagnostic performance of the new model was compara-
ble to that of experienced pediatric radiologists (average 
AUC 0.860 vs 0.876) and significantly superior than that 
of junior and senior radiologists with limited experience 
(average AUC 0.838 vs 0.773, and 0.829 vs 0.749, respec-
tively) in real-world mimic settings. More importantly, 
the new app could aid both junior and senior radiolo-
gists with limited experience to improve their diagnos-
tic performance (average AUC increasing from 0.773 to 
0.835 for junior radiologist and from 0.749 to 0.805 for 
senior radiologists, respectively) with increased self-con-
fidence. All these findings showed that this newly devel-
oped model has great potential to help inexperienced 

radiologists diagnose BA in real clinical practice. There-
fore, with the application of the new model, there might 
be a reduction in delayed diagnosis of BA for sus-
pected infants in primary hospitals without experienced 
radiologists.

Smartphone photos exhibit variability in factors such 
as camera resolution of the smartphone, viewing angle of 
photos, and moiré pattern of the screen device during the 
artificial collection process, making diagnosis substan-
tially more challenging [19]. In this study, we overcome 
this challenge by collecting a large number of smart-
phone photos of US gallbladder images to jointly train the 
model, thereby making the model robust enough to pho-
tographic variability. When tested in real-world mimic 

Table 2 The diagnostic performance of junior radiologists alone, smartphone app alone, and junior radiologists with smartphone 
app’s assistance in diagnosing biliary atresia

95% confidence intervals are included in brackets
a Nine junior radiologists were labeled “A” to “I”. “-initial” represents the diagnosis of the radiologist alone; “Model” represents the diagnosis of the smartphone app 
tested with the photos taken by the relevant radiologist; “-final” represents the diagnosis of the radiologist with smartphone app’s assistance
# The P1 values were from the comparison between the AUC of the radiologists alone and the AUCs of the smartphone app alone. The P2 values were from the 
comparison between the AUC of the radiologists alone and the AUCs of smartphone app-assisted radiologists. Differences between various AUCs were compared 
using a Delong test

Radiologista AUC Sensitivity (%) Specificity (%) Accuracy (%) P1  value# P2  value# Not 
gallbladder

A-initial 0.798 (0.751, 0.840) 78.3 (71.7, 84.0) 81.3 (73.9, 87.3) 79.6 (70.3, 89.8) 0.11 0.01 3

Model 0.838 (0.794, 0.876) 87.8 (82.3, 92.1) 79.9 (72.4, 86.1) 84.4 (74.8, 94.9) – – –

A-final 0.863 (0.821, 0.898) 90.0 (84.7, 93.8) 82.6 (75.4, 88.4) 86.8 (77.1, 97.4) – – –

B-initial 0.784 (0.735, 0.827) 85.2 (79.3, 89.9) 71.5 (63.4, 78.7) 79.3 (70.0, 89.4) 0.02 0.09 9

Model 0.841 (0.797, 0.879) 88.4 (82.9, 92.6) 79.9 (72.4, 86.1) 84.7 (75.1, 95.2) – – –

B-final 0.819 (0.773, 0.859) 89.4 (84.1, 93.4) 74.3 (66.4, 81.2) 82.9 (73.4, 93.3) – – –

C-initial 0.853 (0.811, 0.890) 89.4 (84.1, 93.4) 81.3 (73.9, 87.3) 85.9 (76.2, 96.4) 0.66 0.87 5

Model 0.850 (0.807, 0.887) 91.5 (86.6, 95.1) 78.5 (70.9, 84.9) 85.9 (76.2, 96.4) – – –

C-final 0.860 (0.818, 0.896) 86.4 (81.0, 90.8) 87.4 (80.3, 92.6) 86.5 (76.8, 97.1) – – –

D-initial 0.725 (0.674, 0.772) 80.4 (74.0, 85.8) 64.6 (56.2, 72.4) 73.6 (64.7, 83.4)  < 0.001  < 0.001 7

Model 0.849 (0.806, 0.886) 92.1 (87.2, 95.5) 77. 8 (70.1, 84.3) 85.9 (76.2, 96.4) – – –

D-final 0.810 (0.764, 0.851) 88.4 (82.9, 92.6) 73.6 (65.6, 80.6) 82.0 (72.5, 92.3) – – –

E-initial 0.777 (0.728, 0.821) 89.4 (84.1, 93.4) 66.0 (57.6, 73.7) 79.3 (70.0, 89.4) 0.12 0.06 8

Model 0.820 (0.775, 0.860) 88.4 (82.9, 92.6) 75.7 (67.9, 82.4) 82.9 (73.4, 93.3) – – –

E-final 0.828 (0.783, 0.867) 90.0 (84.7, 93.8) 75.7 (67.9, 82.4) 83.8 (74.2, 94.2) – – –

F-initial 0.821 (0.776, 0.861) 92.1 (87.2, 95.5) 72.2 (64.2, 79.4) 83.5 (74.0, 93.9) 0.02 0.003 8

Model 0.866 (0.824, 0.900) 90.5 (85.4, 94.3) 82.6 (75.4, 88.4) 87.1 (77.4, 97.7) – – –

F-final 0.876 (0.836, 0.909) 90.5 (85.4, 94.3) 84.7 (77.8, 90.2) 88.0 (78.2, 98.7) – – –

G-initial 0.769 (0.720, 0.813) 85.7 (79.9, 90.4) 68.1 (59.8, 75.6) 78.1 (68.9, 88.2) 0.01 0.01 7

Model 0.835 (0.791, 0.873) 87.8 (82.3, 92.1) 79.2 (71.6, 85.5) 84.1 (74.5, 94.5) – – –

G-final 0.806 (0.760, 0.847) 88.4 (82.9, 92.6) 72.9 (64.9, 80.0) 81.7 (72.3, 92.0) – – –

H-initial 0.743 (0.693, 0.789) 77. 8 (71.2, 83.5) 70.8 (62.7, 78.1) 74.8 (65.8, 84.7) 0.01  < 0.001 13

Model 0.817 (0.771, 0.857) 86.2 (80.5, 90.8) 77.1 (69.3, 83.7) 82.3 (72.8, 92.7) – – –

H-final 0.820 (0.775, 0.860) 86.2 (80.5, 90.8) 77. 8 (70.1, 84.3) 82.6 (73.1, 92.9) – – –

I-initial 0.686 (0.633, 0.735) 63.5 (56.2, 70.4) 73.6 (65.6, 80.6) 67.9 (59.3, 77.3)  < 0.001  < 0.001 21

Model 0.830 (0.785, 0.868) 86.8 (81.1, 91.3) 79.2 (71.6, 85.5) 83.5 (74.0, 93.9) – – –

I-final 0.829 (0.784, 0.868) 87.3 (81.7, 91.7) 78.5 (70.9, 84.9) 83.5 (74.0, 93.9) – – –
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Table 3 The diagnostic performance of senior radiologists alone, smartphone app alone, and senior radiologists with smartphone 
app’s assistance in diagnosing biliary atresia

95% confidence intervals are included in brackets
a Five senior radiologists were labeled “J” to “N”. “-initial” represents the diagnosis of the radiologist alone; “Model” represents the diagnosis of the smartphone app 
tested with the photos taken by the relevant radiologist; “-final” represents the diagnosis of the radiologist with smartphone app’s assistance
# The P1 values were from the comparison between the AUC of the radiologists alone and the AUCs of the smartphone app alone. The P2 values were from the 
comparison between the AUC of the radiologists alone and the AUCs of smartphone app-assisted radiologists. Differences between various AUCs were compared 
using a Delong test

Radiologista AUC Sensitivity (%) Specificity (%) Accuracy (%) P1  value# P2  value# Not 
gallbladder

J-initial 0.816 (0.770, 0.856) 88.9 (83.5, 93.0) 74.3 (66.4, 81.2) 82.6 (73.1, 92.9) 0.01 0.18 0

Model 0.874 (0.834, 0.908) 91.5 (86.6, 95.1) 83.3 (76.2, 89.0) 88.0 (78.2, 98.7) – – –

J-final 0.841 (0.797, 0.879) 88.4 (82.9, 92.6) 79.9 (72.4, 86.1) 84.7 (78.1, 95.2) – – –

K-initial 0.714 (0.662, 0.762) 94.2 (89.8, 97.1) 48.6 (40.2, 57.1) 66.1 (57.6, 75.4)  < 0.001 0.01 2

Model 0.859 (0.817, 0.895) 90.0 (84.7, 93.8) 81.9 (74.7, 87.9) 79.3 (70.0, 89.4) – – –

K-final 0.753 (0.703, 0.798) 93.7 (89.2, 96.7) 56.9 (48.4, 65.2) 81.4 (72.0, 91.7) – – –

L-initial 0.670 (0.616, 0.720) 60.3 (53.0, 67.3) 73.6 (65.6, 80.6) 74.5 (65.5, 84.3)  < 0.001  < 0.001 8

Model 0.785 (0.737, 0.828) 84.1 (78.1, 89.0) 72.9 (64.9, 80.0) 86.5 (76.8, 97.1) – – –

L-final 0.810 (0.763, 0.850) 84.1 (78.1, 89.0) 77.8 (70.1, 84.3) 77.8 (68.6, 87.9) – – –

M-initial 0.731 (0.680, 0.778) 58.7 (51.4, 65.8) 87.5 (81.0, 92.4) 71.2 (62.4, 80.8) 0.001 0.002 4

Model 0.818 (0.773, 0.858) 87.3 (81.7, 91.7) 76.4 (68.6, 83.1) 82.6 (73.1, 92.9) – – –

M-final 0.791 (0.744, 0.834) 71.4 (64.4, 77.8) 86.8 (80.2, 91.9) 78.1 (68.9, 88.2) – – –

N-initial 0.812 (0.766, 0.853) 88.9 (83.5, 93.0) 73.6 (65.6, 80.6) 82.3 (72.8, 92.7) 0.91 0.08 3

Model 0.810 (0.764, 0.851) 90.5 (85.4, 94.3) 71.5 (63.4, 78.7) 82.3 (72.8, 92.7) – –

N-final 0.830 (0.785, 0.869) 91.0 (86.0, 94.7) 75.0 (67.1, 81.8) 84.1 (74.5, 94.5) – –

Table 4 The diagnostic performance of experienced pediatric radiologists alone, smartphone app alone, and experienced pediatric 
radiologists with smartphone app’s assistance in diagnosing biliary atresia

95% confidence intervals are included in brackets
a Four experienced pediatric radiologists were labeled “O” to “R”. “-initial” represents the diagnosis of the radiologist alone; “Model” represents the diagnosis of the 
smartphone app tested with the photos taken by the relevant radiologist; “-final” represents the diagnosis of the radiologist with smartphone app’s assistance
# The P1 values were from the comparison between the AUC of the radiologists alone and the AUCs of the smartphone app alone. The P2 values were from the 
comparison between the AUC of the radiologists alone and the AUCs of smartphone app-assisted radiologists. Differences between various AUCs were compared 
using a Delong test

Radiologista AUC Sensitivity (%) Specificity (%) Accuracy (%) P1  value# P2  value# Not 
gallbladder

O-initial 0.903 (0.866, 0.932) 88.9 (83.5, 93.0) 91.7 (85.9, 95.6) 82.9 (73.4, 93.3)  < 0.001 0.16 0

Model 0.831 (0.787, 0.870) 94.7 (90.5, 97.4) 71.5 (63.4, 78.7) 84.7 (75.1, 95.2) – – –

O-final 0.897 (0.859, 0.927) 88.4 (82.9, 92.6) 91.0 (85.1, 95.1) 89.5 (79.6, 100) – – –

P-initial 0.887 (0.848, 0.919) 85.7 (79.9, 90.4) 91.7 (85.9, 95.6) 64.0 (55.7, 73.2) 0.25 0.91 0

Model 0.911 (0.875, 0.939) 94.7 (90.5, 97.4) 87.5 (81.0, 92.4) 91.6 (81.6, 100) – – –

P-final 0.886 (0.847, 0.918) 86.2 (80.5, 90.8) 91.0 (85.1, 95.1) 65.8 (57.3, 75.1) – – –

Q-initial 0.835 (0.791, 0.874) 94.2 (89.8, 97.1) 72.9 (64.9, 80.0) 85.0 (75.4, 95.5) 0.37 0.07 0

Model 0.823 (0.778, 0.863) 93.1 (88.5, 96.3) 71.5 (63.4, 78.7) 83.5 (74.0, 93.9) – – –

Q-final 0.814 (0.768, 0.855) 92.1 (87.2, 95.5) 70.8 (62.7, 78.1) 82.9 (73.4, 93.3) – – –

R-initial 0.878 (0.838, 0.911) 82.5 (76.4, 87.7) 93.1 (87.6, 96.6) 87.1 (77.4, 97.7) 0.77 0.51 0

Model 0.873 (0.832, 0.907) 85.7 (79.9, 90.4) 88.9 (82.6, 93.5) 87.1 (77.4, 97.7) – – –

R-final 0.882 (0.843, 0.915) 84.1 (78.1, 89.0) 92.4 (86.7, 96.1) 87.7 (77.9, 98.3) – – –
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settings, the new model still performed well among 
smartphone photos taken by different radiologists. Fur-
thermore, the agreement of the model was graded as 
good when tested with smartphone photos taken by 18 
radiologists, showing the stability of the model in subtle 
changeable environments among different operators. All 
these findings reveal the generalization and robustness of 
this new smartphone app in real-world mimic settings.

In this study, we also optimize the model by adding pre-
diction probability and heatmap to the output interface. 
Radiologists would like to believe the result with a high 
prediction probability provided by the model and hence 
enhance their diagnostic confidence, and if the heatmap 
shows the gallbladder area was highly concerned, radi-
ologists would also prefer to trust the result provided by 
the model. The combination of heatmap and prediction 

Fig. 4 Example of a case where radiologists obtained the correct diagnosis with the assistance of the new smartphone app. a An original 
sonographic gallbladder image selected from the video of a 65-day-old female infant with biliary atresia. Seven radiologists considered 
the gallbladder to be normal. However, the diagnosis provided by the model obtained from the photos taken by six of these seven radiologists 
indicated biliary atresia, and the heatmaps all focused on the gallbladder. Finally, five radiologists revised the diagnosis of this infant to biliary atresia. 
b The smartphone photo taken by radiologist J. c The output interface of the test result in the new smartphone app for smartphone photo shown 
in b, displaying a probability value of 99.82%. With the assistance of the new smartphone app, radiologist J finally revised the diagnosis of this infant 
to biliary atresia



Page 11 of 14Zhou et al. BMC Medicine           (2024) 22:29  

probability could enhance the transparency and inter-
pretability of the model.

Expert-level deep-learning systems can aid doctors by 
offering second opinions [29], which is confirmed in this 
study. Our results showed that for radiologists with lim-
ited experiences, the juniors seem to benefit more from 
the model than the seniors. The possible reason is that 
senior radiologists prefer to believe their own diagnosis 
due to their expertise. On the contrary, junior radiolo-
gists are more likely to trust the smartphone app model 
because of its expert-level performance. Nevertheless, 
the diagnostic confidence of BA in both junior and sen-
ior radiologists increased greatly with the aid of the 
smartphone app model. In addition, the diagnostic confi-
dence of experienced pediatric radiologists had also been 
enhanced with the assistance of the model. This is very 
important because it might reduce the missed diagnosis 
of BA and avoid unnecessary further invasive procedures 
(i.e., liver biopsy) in infants with suspected BA.

In this study, we found that when the lumen of the 
gallbladder was small or not filled, the adjacent struc-
tures could be mistakenly regarded as gallbladder by 
some radiologists, especially junior radiologists. For the 
smartphone photos of pseudo-gallbladders, the model 
preferred a diagnosis of BA because these pseudo-gall-
bladder structures somewhat resembled abnormal gall-
bladders. Therefore, the application of this smartphone 
app will be limited in infants with a non-filled gallblad-
der due to the fact that most of the patients with empty 

gallbladder are without BA [6]. For these infants, further 
investigation is needed. Furthermore, image capture and 
interpretation might fall to different staff members in 
some countries. We thought that the images’ quality con-
trol should be performed by the radiologist responsible 
for interpreting the images, regardless of whether that 
radiologist is required to capture the images. This model 
can be applied to aid diagnosis only if the image is con-
sidered acceptable by the radiologist who interpreted it.

In clinical practice, the potential value of this model is 
to either improve the diagnostic accuracy or reduce the 
resource requirements depending on the working pat-
terns of radiologists. If the same individual is involved 
in image capture and interpretation, this model may 
help the individual radiologist improve the diagnostic 
performance by providing expert-level suggestions. On 
the other hand, if different individuals collect and inter-
pret data independently, this model may be expected to 
reduce or replace individuals who play the role of image 
interpretation through partially or fully automatic diag-
nosis. Future clinical trials can be conducted to further 
test the clinical application value of this model.

This study has several limitations. Firstly, nine junior 
and five senior radiologists participating in this study 
were from the same clinical center, which may intro-
duce biases like gallbladder abnormality interpretation. 
The robustness of the smartphone app model in assist-
ing radiologists from other centers needs to be tested in 
the future. Secondly, the diagnoses of radiologists were 

Fig. 5 Examples of cases where radiologists consider non-gallbladder as gallbladder. a–e These belong to a 59-day-old female infant with biliary 
atresia, in which the arrow in a refers to the correct gallbladder (small gallbladder) shown in the original sonographic video. The hepato-intestinal 
space in b and c, the blood vessels in d, and the gut in e are non-gallbladder structures (rectangles) in smartphone photos, which were considered 
as gallbladder by four radiologists. f–j These belong to a 58-day-old male infant with non-biliary atresia, in which the arrow in f refers to the correct 
gallbladder (unfilled gallbladder) in the original sonographic video. The hepato-intestinal space in g and the gut in h–j are the non-gallbladder 
structures (rectangles) in smartphone photos, which were considered as gallbladder by four radiologists. Sonographic gallbladder videos of these 
two infants are available in Additional file 4: Video S3 for the first infant and in Additional file 5: Video S4 for the second infant
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made by reviewing US gallbladder videos only, so the 
performance of radiologists could be underestimated. 
Additional information, such as other US features (i.e., 
triangular cord sign) and laboratory test results, may 
potentially increase the diagnostic performances of radi-
ologists. Thirdly, no additional experiments were con-
ducted to confirm the potential impact of the heatmap 
on radiologists. Further analysis is necessary to explore 
the relationship between heatmap attention to gallblad-
der features and prediction confidence in future work. 
Fourthly, radiologists might be dissuaded from their cor-
rect diagnoses of BA with the application of this model. 
Last but not least, the test cohort was collected from 
patients at high risk of suffering from biliary atresia but 

was not population-based. The proportion of biliary atre-
sia in a real-world population-based setting would be 
much lower than the proportion in this study. However, 
it is reported that a targeted implementation in high-risk 
groups might be a more beneficial approach [30].

Conclusions
The new smartphone app model showed robust and sat-
isfactory performance for the diagnosis of BA even in 
the changeable environment among different operators. 
Most importantly, this new app could aid radiologists 
with limited experiences to improve their diagnostic per-
formances and confidence in the identification of BA. It 
could potentially reduce the delayed diagnosis of BA for 

Fig. 6 Changes in diagnostic confidence between initial diagnosis made by radiologists alone and final diagnosis made by radiologists 
with smartphone app’s assistance. a Changes in junior radiologists in the cohort with true label biliary atresia. b Changes in senior radiologists 
in the cohort with true label biliary atresia. c Changes in experienced pediatric radiologists in the cohort with true label biliary atresia. d Changes 
in junior radiologists in the cohort with true label non-biliary atresia. e Changes in senior radiologists in the cohort with true label non-biliary 
atresia. f Changes in experienced pediatric radiologists in the cohort with true label non-biliary atresia. * “Initial” represents independent diagnosis 
by radiologists, and “Final” represents the radiologist’s diagnosis with the assistance of the model. “1” to “4” represent “definitely non-BA,” “probably 
non-BA,” “probably BA,” and “definitely BA,” respectively
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suspected infants in primary hospitals where experienced 
radiologists are lacking, representing considerable poten-
tial for real-world applications.
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