
Chen et al. BMC Medicine           (2024) 22:90  
https://doi.org/10.1186/s12916-024-03272-8

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medicine

Plasma metabolites and risk of seven 
cancers: a two-sample Mendelian 
randomization study among European 
descendants
Yaxin Chen1,2, Yufang Xie2, Hang Ci1, Zhengpei Cheng3, Yongjie Kuang4, Shuqing Li1, Gang Wang5, Yawen Qi1, 
Jun Tang1, Dan Liu2, Weimin Li1,2* and Yaohua Yang3*   

Abstract 

Background While circulating metabolites have been increasingly linked to cancer risk, the causality underlying 
these associations remains largely uninterrogated.

Methods We conducted a comprehensive 2-sample Mendelian randomization (MR) study to evaluate the potential 
causal relationship between 913 plasma metabolites and the risk of seven cancers among European-ancestry individ-
uals. Data on variant-metabolite associations were obtained from a genome-wide association study (GWAS) of plasma 
metabolites among 14,296 subjects. Data on variant-cancer associations were gathered from large-scale GWAS con-
sortia for breast (N = 266,081), colorectal (N = 185,616), lung (N = 85,716), ovarian (N = 63,347), prostate (N = 140,306), 
renal cell (N = 31,190), and testicular germ cell (N = 28,135) cancers. MR analyses were performed with the inverse 
variance-weighted (IVW) method as the primary strategy to identify significant associations at Bonferroni-corrected 
P < 0.05 for each cancer type separately. Significant associations were subjected to additional scrutiny via weighted 
median MR, Egger regression, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and reverse MR analyses. Rep-
lication analyses were performed using an independent dataset from a plasma metabolite GWAS including 8,129 
participants of European ancestry.

Results We identified 94 significant associations, suggesting putative causal associations between 66 distinct 
plasma metabolites and the risk of seven cancers. Remarkably, 68.2% (45) of these metabolites were each associated 
with the risk of a specific cancer. Among the 66 metabolites, O-methylcatechol sulfate and 4-vinylphenol sulfate dem-
onstrated the most pronounced positive and negative associations with cancer risk, respectively. Genetically proxied 
plasma levels of these two metabolites were significantly associated with the risk of lung cancer and renal cell cancer, 
with an odds ratio and 95% confidence interval of 2.81 (2.33–3.37) and 0.49 (0.40–0.61), respectively. None of these 94 
associations was biased by weak instruments, horizontal pleiotropy, or reverse causation. Further, 64 of these 94 were 
eligible for replication analyses, and 54 (84.4%) showed P < 0.05 with association patterns consistent with those shown 
in primary analyses.
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Conclusions Our study unveils plausible causal relationships between 66 plasma metabolites and cancer risk, 
expanding our understanding of the role of circulating metabolites in cancer genetics and etiology. These findings 
hold promise for enhancing cancer risk assessment and prevention strategies, meriting further exploration.
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Background
Cancer is the second leading cause of human mortality, 
imposing substantial medical and socioeconomic bur-
dens [1]. Consequently, the prioritization of cancer pre-
vention and screening strategies is of critical importance. 
Epidemiological studies in recent decades have identi-
fied multiple genetic, lifestyle, and environmental factors 
associated with cancer risk [2, 3]. In particular, genome-
wide association studies (GWAS) have identified more 
than 1000 genetic susceptibility variants for various types 
of cancer [4–7]. However, the etiology of cancer could 
not be fully explained by these factors. In addition, the 
intricate interplay among these factors further compli-
cates the inference of potential causality underlying their 
associations with cancer risk.

Circulating metabolites are small molecules originating 
from cells, tissues, and biological fluids, including a vari-
ety of compounds such as amino acids, carbohydrates, 
lipids, and xenobiotics. These molecules have been fre-
quently employed to investigate physiological and patho-
physiological processes [8, 9]. Recent observational 
studies have illuminated metabolic dysregulation as a 
hallmark of cancer, with multiple circulating metabo-
lites linked to cancer development [10]. For example, 
elevated plasma pseudouridine was reported to be asso-
ciated with an increased risk of ovarian cancer [11]. In 
addition, aberrant L-tryptophan metabolism was shown 
to drive the progression of breast, renal cell, and blad-
der cancers [12]. Therefore, investigating the metabolites 
associated with cancer development not only aids in early 
cancer screening and prevention, but also enhances our 
insights into the biological mechanisms underlying can-
cer treatment. However, these studies mainly focused on 
a small subset of metabolites and were limited by biases 
commonly encountered in conventional epidemiological 
studies, such as small sample sizes, potential confound-
ers, and reverse causation.

Various factors influence metabolite levels, includ-
ing genetics [13]. The advent of untargeted and tar-
geted metabolomics technologies has facilitated the 
exploration of the genetic architecture of thousands 
of metabolites [13–17]. Typically, these investigations 
measure metabolite abundance in the blood, effectively 
reflecting the aggregative metabolite concentrations 
across tissues [18]. Notably, a recent study performed 

genotyping and untargeted plasma metabolomic pro-
filing among 19,994 subjects of European ancestry and 
identified 2599 significant associations between genetic 
variants and metabolites [17]. Intriguingly, a consider-
able proportion of these variants were found to colo-
calize with GWAS-identified risk variants for various 
diseases, including cancer [17]. The shared genetic 
determinant over both plasma metabolites and cancer 
forms a strong basis for the exploration of the relation-
ship between them using genetic variants as instrumen-
tal variables through Mendelian randomization (MR) 
studies. Given the random allocation of alleles during 
gamete formation, findings from MR analyses hold the 
potential to infer causal connections between expo-
sures and outcomes [19, 20].

Several MR studies have revealed circulating metab-
olites with genetically predicted levels that might be 
causally associated with cancer risk. For example, doc-
osapentaenoic acid [21] and high-density lipoprotein 
[22] were found to be associated with increased lung 
cancer and breast cancer risk, respectively. In addi-
tional, 1-linoleoylglycerophosphoethanolamine was 
associated with a reduced risk of colorectal cancer [23]. 
Although these results showcase the potential of cir-
culating metabolites as causal biomarkers for cancer, 
it is important to note that most of these studies only 
investigated a limited number of metabolites, primar-
ily owing to the relatively slow adoption of untargeted 
metabolomics platforms. On the other hand, a majority 
of these studies did not take full advantage of the most 
up-to-date GWAS data for both metabolites and can-
cers. This potential oversight could have resulted in the 
utilization of weak genetic instruments and less precise 
effect size estimates for both variant-metabolite and 
variant-cancer associations.

To address these limitations, we meticulously assem-
bled the most comprehensive GWAS data available to 
date for untargeted metabolomics and seven cancers 
among individuals of European descent. Leveraging 
these datasets, we conducted a two-sample MR study 
to unravel the potential causal relationship between 913 
plasma metabolites and the risk of breast, lung, colo-
rectal, prostate, ovarian, renal cell, and testicular germ 
cell cancers. For the significant causal associations we 
identified, a series of complementary analyses were 
conducted to reinforce their reliability and robustness.
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Methods
Study design
The overall study workflow is illustrated in Fig. 1. In this 
study, we treated the plasma level of each metabolite as 
the exposure, and the risk of each cancer as the outcome. 
Single nucleotide polymorphisms (SNPs) significantly 
associated with exposure were utilized as instrumental 
variables (IVs). For a robust MR study, each IV should 
be significantly associated with the exposure, independ-
ent of all the other IVs and potential confounding fac-
tors, and impacting the outcome only by influencing 
the exposure [19, 20]. These principles were carefully 
adhered to throughout the entire study. We conducted 
a comprehensive set of downstream analyses to account 
for potential biases that might undermine the reliability 
of our findings. Specifically, we estimated F-statistics and 

conducted the Steiger test to ensure the validity of IVs, 
employed Egger regression and Mendelian Randomiza-
tion Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
to detect and correct for horizontal pleiotropy and outli-
ers, conducted leave-one-out (LOO) analyses to evaluate 
the presences of predominant IVs, and performed reverse 
MR analyses to determine the possibility of reverse cau-
sation [24–26]. We additionally implemented genetic 
correlation analyses to assess if shared genetic factors 
between metabolites and cancer risk might have con-
founded our MR estimates. Colocalization analyses were 
also conducted to examine the presence of shared causal 
variants between metabolites and cancer risk in genomic 
loci where IVs reside. For metabolites showing signifi-
cant associations with the risk of each specific cancer 
type, we further performed multivariable MR (MVMR) 

Fig. 1 Overall study design and workflow. GWAS, genome-wide association study; BC, breast cancer; CRC, colorectal cancer; RCC, renal cell cancer; 
LC, lung cancer; OC, ovarian cancer; PC, prostate cancer; TGCC, testicular germ cell cancer; SNPs, single nucleotide polymorphisms; kb, kilobase; 
MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; LOO, leave-one-out
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analyses [27] to nominate metabolites that might directly 
influence cancer risk independent of the effects of all the 
other metabolites. Finally, an independent plasma metab-
olites GWAS dataset was employed to evaluate the find-
ings from our primary analyses.

Exposure data
GWAS data of plasma metabolites were sourced from an 
interactive web server accessible at https:// omics cience. 
org/ apps/ mgwas/ mgwas. table. php. This dataset comprised 
a total of 913 metabolites quantified for 14,296 individu-
als of European descent from the EPIC-Norfolk study and 
the INTERVAL study [17]. In brief, untargeted plasma 
metabolomic profiling was conducted using the Metabo-
lon HD4 platform. Genotyping was performed using the 
Affymetrix Axiom Array, and data were imputed with the 
1000 Genomes Phase 3-UK10K data as the reference panel. 
GWAS analyses were conducted within each cohort via lin-
ear regression analyses adjusting for age and sex, and the 
results were combined through inverse variance-weighted 
fixed-effect meta-analyses [17].

To externally validate the findings based on data from 
the EPIC-Norfolk and INTERVAL study, we utilized data 
from an independent GWAS of 1091 blood metabolites 
among 8192 individuals of European ancestry from the 
Canadian Longitudinal Study on Aging (CLSA) [14]. 
Summary-level GWAS statistics for these 1091 metabo-
lites were retrieved from the GWAS catalog, under the 
accession numbers GCST90199621-GCST90201020.

Outcome data
Summary statistics data for GWAS on seven distinct can-
cers among European ancestry subjects were collected 
from large-scale GWAS consortia. Detailed informa-
tion of these data and consortia is presented in Addi-
tional file  1: Table  S1. Briefly, breast cancer data were 
obtained from the Breast Cancer Association Consor-
tium (BCAC), including 142,798 cases and 123,283 con-
trols [28]. Data on colorectal cancer were sourced from 
the GWAS catalog (GCST90255675), including 78,473 
cases and 107,143 controls [29] from the Colorectal 
Cancer Transdisciplinary Study (CORECT), the Genet-
ics and Epidemiology of Colorectal Cancer Consortium 
(GECCO), the Colon Cancer Family Registry (CCFR), 
and the UK Biobank. Data on lung cancer were obtained 
from the GWAS catalog (GCST004748), including 29,266 
cases and 56,450 controls from the Lung Cancer Cohort 
Consortium (LC3) and the Transdisciplinary Research of 
Cancer in Lung of the International Lung Cancer Con-
sortium (TRICL-ILCCO) [6]. Data on renal cell can-
cer were acquired from the database of Genotypes and 
Phenotypes (dbGaP; phs001736.v2.p1), including 10,784 
cases and 20,406 controls from the International Agency 

for Research on Cancer (IARC), the National Cancer 
Institute (NCI), the University of Texas MD Anderson 
Cancer, and the Institute of Cancer Research, UK [30]. 
Data of prostate cancer was accessed from the Prostate 
Cancer Association Group to Investigate Cancer Asso-
ciated Alterations in the Genome (PRACTICAL) con-
sortium, including 79,194 cases and 61,112 controls [4]. 
Data on ovarian cancer were obtained from the GWAS 
catalog under GCST004415, including 22,406 cases and 
40,941 controls from the Ovarian Cancer Association 
Consortium (OCAC) [31]. Data on testicular germ cell 
cancer were retrieved from dbGaP (phs001349.v2.p1), 
including 10,156 cases and 17,979 controls from the Tes-
ticular Cancer Consortium (TCC) [7].

Selection of genetic IVs
For each metabolite, non-palindromic SNPs with a minor 
allele frequency (MAF) of > 0.05 in the 1000 Genome Pro-
ject (phase 3 version 5 focusing on European descend-
ants) and shown in cancer GWAS data were used for IV 
selection. Linkage disequilibrium (LD) clumping was per-
formed with a window size of 500 kilobase (kb) to select 
SNPs that were independently (pairwise LD r2 < 0.1) associ-
ated with plasma metabolites at P < 1 ×  10−6, as previously 
described [23, 32, 33]. For each metabolite, the variance in 
its plasma level explained by each IV (R2) and the strength 
of each IV (F-statistics) were calculated using formulas 
R
2
= (2β2

× EAF× (1− EAF))/(2β2
× EAF× (1− EAF)+

2N × EAF× (1− EAF)× SE
2) and 

F = (R2
× (N − 2))/(1− R

2) , respectively. In these for-
mulas, EAF denotes the effect allele frequency. β and SE 
represent the effect size and standard error of the SNP-
metabolite association, respectively. N  is the sample size 
of the metabolite GWAS [34]. After excluding weak IVs by 
F-statistic < 10 and the Steiger test [32], metabolites with at 
least three IVs were eligible for MR analyses. We further 
applied a more stringent threshold, i.e., a window size of 
1000 kb, P < 5 ×  10−8, and LD r2 < 0.001, to select IVs for 
MR analyses to evaluate the robustness of our findings.

MR analysis
We employed the inverse variance-weighted (IVW) 
method as the primary strategy for MR analyses. IVW 
estimates, known as the assumption of no horizontal 
pleiotropy across all SNPs, are derived from a compre-
hensive analysis of Wald ratios for all genetic variants 
[35]. To account for type I error, Bonferroni correction 
was applied to analysis results for each cancer type to 
identify significant associations at Bonferroni-corrected 
P < 0.05. To ensure the robustness of findings, comple-
mentary analyses were performed using three additional 
MR approaches. Specifically, the weighted median [36] 
method, which assumes that up to half of IVs are invalid, 

https://omicscience.org/apps/mgwas/mgwas.table.php
https://omicscience.org/apps/mgwas/mgwas.table.php
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was utilized to address the potential deviations from the 
strong assumption of IVW that all IVs are valid. Egger 
regression [26] was applied to identify and adjust for plei-
otropic effects, wherein genetic variants influence both 
the exposure and the outcome. MR-PRESSO [25] was 
utilized to detect and correct for the impacts of outliers 
on MR estimates.

Complementary, sensitivity, and reverse MR analyses
To assess the robustness of significant association iden-
tified by IVW, we conducted a series of complementary 
and sensitivity analyses, including heterogeneity tests to 
assess the validity of IVs, Egger intercept test and MR-
PRESSO global test to evaluate horizontal pleiotropy, 
and LOO analyses to examine the presence of dominant 
IVs [37]. To examine the possible reverse causality of the 
identified significant associations, we performed reverse 
MR analyses in which cancer was treated as the exposure 
and metabolites as the exposure. Given the substantially 
larger sample size of cancer GWAS, more stringent cri-
teria as recommended by previous studies [32] were 
applied to select SNPs that were independently (pairwise 
LD r2 < 0.001 in 1000  kb window) associated with can-
cer at the genome-wide statistical significance level of 
P < 5 ×  10−8 as IVs. Associations with P < 0.05 estimated 
by the IVW method were considered significant.

Finally, a significant metabolite-cancer association was 
considered confident if it met a series of stringent criteria: 
(1) the significance of association reached Bonferroni-
corrected P < 0.05 using IVW as well as P < 0.05 using at 
least one of the other three approaches, (2) the associa-
tion pattern was consistent across all MR approaches, (3) 
all IVs had an F-statistics of > 10, (4) there was no signifi-
cant heterogeneity among IVs, (5) there was no evidence 
of horizontal pleiotropy (Egger P for intercept > 0.05 and 
MR-PRESSO global test P > 0.05), and (6) MR estimates 
were not significantly affected by a single IV in LOO 
analyses. All statistical analyses were conducted using the 
R packages TwoSampleMR (v0.5.7) [38] and MR-PRESSO 
(v1.0) [25].

Power calculation
To evaluate the statistical power of MR estimates, we 
utilized a specialized online tool (https:// shiny. cnsge 
nomics. com/ mRnd/) [39]. This tool employs asymptotic 
theory to estimate power values for the detection of 
causal effects derived from IVs. We performed power cal-
culations at a type I error rate of 0.05, taking into account 
parameters such as R2 of IVs, the proportion of cases of 
cancer GWAS, and the odds ratio (OR) of MR analyses 
using the IVW method.

Multivariable MR
To determine the direct impact of each plasma metabo-
lite on cancer risk, while accounting for the effects of 
other metabolites, we performed multivariable MR 
(MVMR) analyses using the R package MVMR (v 0.4) 
[27]. MVMR effectively manages the complexities arising 
from interdependencies among genetic variations linked 
to different exposures by including multiple exposures 
that interact with one another [27]. For each cancer type, 
MVMR were performed employing all IVs involved in 
significant metabolite-cancer associations identified in 
univariate MR analyses.

Genetic correlation and colocalization analysis
MR estimates can violate causal effects in the presence 
of a genetic correlation between the exposure and the 
outcome of interest. To address this, we conducted 
genetic correlation analyses using linkage disequilib-
rium score regression (LDSC, v2.0.1), which estimates 
coinheritance using chi-squared statistics based on 
the full summary statistics of two traits [23, 40]. On 
the other hand, studies have suggested that colocaliza-
tion analysis could complement MR by addressing its 
limitations related to pleiotropy and linkage disequi-
librium, providing a more nuanced understanding of 
the shared genetic underpinnings of exposures and 
outcomes [41]. For each significant association identi-
fied in primary analyses, we examined the colocaliza-
tion between the metabolite and the risk of cancer at 
each genomic locus where each IV resides using the 
R package coloc (v5.2.2) [42] to investigate whether 
identified causal associations between metabolites and 
each cancer risk were driven by high LD, as reported 
in a previous study [43]. A posterior probability (PP4) 
of > 0.5 was considered as evidence for moderate 
colocalization.

Results
Genetic IVs
We obtained summary statistics for a total of 517,882 
associations between 162,261 common genetic variants 
(MAF > 0.05) and 913 metabolites at P <  10−5 from the 
study by Surendran et al. [17]. At the LD clumping crite-
ria of pairwise LD r2 < 0.1 within a 500 kb window and the 
significance threshold of P <  10−6, 911 of these 913 had 
at least 1 IV. After excluding weak IVs based on F-statis-
tics < 10 and the Steiger test, and outliers (MR-PRESSO 
outliner test P < 0.05), 579 metabolites, each with at least 
3 IVs (median 7; interquartile range [IQR] 4–20), were 
retained for MR analyses. The detailed information on 
the IVs selected for downstream MR analyses is shown in 
Additional file 1: Table S2.

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
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Overall MR results
At Bonferroni-corrected P < 0.05 for each cancer type, 
we identified a total of 94 significant associations, 
including 17 for breast cancer, 33 for colorectal can-
cer, 16 for lung cancer, 7 for ovarian cancer, 13 for 
prostate cancer, 5 for renal cell cancer, and 3 for tes-
ticular germ cell cancer (Fig.  2 and Additional file  1: 
Table  S3). The median variance in plasma metabolite 
levels explained by the IVs for these associations was 
10.20% (IQR 2.68–18.07%) (Additional file  1: Tables 
S3). Scatter plots illustrating these associations are 
presented in Additional file  2: Fig. S1. Out of the 66 
distinct metabolites involved in these associations, 45 
(68.20%) were associated with the risk of a specific 
cancer (Table  1), while the remaining 21 metabolites 
were each associated with risk of at least two different 
cancers (Table 2). These 66 metabolites comprised 29 
lipids, 10 xenobiotics, 8 amino acids, 3 nucleotides, 1 
carbohydrate, and 15 compounds that are not yet well 
annotated (Fig. 2). To evaluate the robustness of these 
significant associations, we performed MR analyses 
using IVs that were selected under a more stringent 
threshold, i.e., P < 5 ×  10−8, LD r2 < 0.001, window size 
of 1000 kb. Of these 94 associations, 76 had a sufficient 
number of IVs (> 3), 50 of which showed P < 0.05 using 
the IVW method. Under the Bonferroni-corrected 
P < 0.05, 11 of these associations remained significant 
(Additional file 1: Table S4).

Metabolites exclusively associated with the risk of a specific 
cancer
Of the 66 metabolites, 45 (68.2%) were each causally 
associated with specific cancer types, including 11 for 
breast cancer, 16 for colorectal cancer, 4 for lung can-
cer, 7 for ovarian cancer, 6 for prostate cancer, and 1 
for renal cell cancer (Table 1). Intriguingly, none of the 
7 metabolites associated with ovarian cancer exhibited 
any significant associations with the other 6 cancer 
types. In contrast, all of the three metabolites associ-
ated with testicular germ cell cancer were spontane-
ously associated with other cancers. Among these 
45 metabolites, the strongest contributory effects 
on cancer risk were observed for 3-carboxy-4-me-
thyl-5-propyl-2-furanpropanoate (CMPF) on breast 
cancer risk (OR 1.24; 95% confidence interval [CI] 
1.12–1.39), 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE 
(P-16:0/20:4)* on colorectal cancer risk (OR 1.21; 95% 
CI 1.14–1.30), 1-arachidonoyl-GPE (20:4n6)* on lung 
cancer risk (OR 1.12; 95% CI 1.07–1.17), 4-acetami-
dobutanoate on ovarian cancer risk (OR 1.11; 95% CI 
1.06–1.16), N6-succinyladenosine on prostate can-
cer risk (OR 1.21; 95% CI 1.12–1.30), and 4-guanid-
inobutanoate on testicular germ cell cancer risk (OR 

1.14; 95% CI 1.08–1.21) (Table  1, Fig.  2). In contrast, 
3,7-dimethylurate, hypotaurine, isovalerylcarnitine, 
1-palmityl-GPC (O-16:0), and 1-stearoyl-GPI (18:0) 
showed the strongest protective effect on the risk of 
breast (OR 0.82; 95% CI 0.75–0.89), colorectal (OR 
0.83; 95% CI 0.78–0.90), lung (OR 0.83; 95% CI 0.79–
0.88), ovarian (OR 0.70; 95% CI 0.58–0.84), and pros-
tate cancer (OR 0.78; 95% CI 0.70–0.87), respectively 
(Table 1, Fig. 2).

Metabolites associated with the risk of multiple cancers
Of the remaining 21 metabolites, 1 was associated with 
the risk of 5 cancers, 4 were each associated with the risk 
of 3 cancers, and 16 were each associated with the risk 
of 2 cancers (Table 2, Fig. 2). An unannotated metabolite 
X-21,410 showed significant association with the risk of 
most cancer types, including the increased risk of lung 
(OR 1.13; 95% CI 1.10–1.16) and colorectal (OR 1.29; 95% 
CI 1.22–1.35) cancers and decreased risk of breast (OR 
0.93; 95% CI 0.91–0.94), prostate (OR 0.91; 95% CI 0.89–
0.93), and renal cell (OR 0.85; 95% CI 0.81–0.90) cancers. 
Of the 16 metabolites each showing associations with 
2 cancer types, 11 were each associated with colorectal 
and lung cancer risk, and notably, all of them exhibited 
contributory effects on both cancer types. Among them, 
O-methylcatechol sulfate showed the strongest asso-
ciation, the genetically predicted plasma levels of which 
were associated with a 1.41-fold (95% CI 1.31–1.52) and 
2.81-fold (95% CI 2.33–3.37) increased risk of colorec-
tal cancer and lung cancer, respectively (Table 2, Fig. 2). 
Conversely, 4 metabolites were each associated with both 
prostate and renal cell cancer, and all of them were pro-
tective against the risk of both cancers. Among them, 
4-vinylphenol sulfate displayed the most pronounced 
protective effects, with ORs of 0.68 (95% CI 0.61–0.76) 
for prostate cancer and 0.49 (95% CI 0.40–0.61) for renal 
cell cancer (Table 2, Fig. 2).

Complementary, sensitivity, and reverse MR analyses
As shown in Additional file 1: Table S3, all the 94 signifi-
cant associations identified using the IVW method con-
sistently demonstrated the same association patterns in 
the results from all 3 additional MR approaches. Nota-
bly, more than 90% (85) of these associations showed 
P < 0.05 in at least 2  of the 3 additional MR analyses. 
Notably, none of these 94 associations was influenced 
by horizontal pleiotropy, as evidenced by Egger regres-
sion (all Pintercept > 0.05) and MR-PRESSO global test (all 
P > 0.05) (Additional file 1: Table S3). In addition, no sig-
nificant heterogeneity was detected among IVs for any of 
these 94 associations (P for heterogeneity > 0.05). Further, 
LOO analyses confirmed that none of these 94 associa-
tions was dominated by a single IV. The statistical power 
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Fig. 2 Dot plot displaying IVW-based MR estimates of significant associations with Bonferroni-corrected P < 0.05 within each cancer type. OR, odds 
ratio. The x-axis represents seven different cancer types, while the y-axis corresponds to the identified metabolites. Circle size indicates the OR, with red 
indicating ORs greater than 1 and blue indicating ORs smaller than 1. A more intense red or blue color signifies associations with smaller P values
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of all MR estimates based on the IVW methods ranged 
from 0.98 to 1.00 (Additional file 1: Table S3). In reverse 
MR analyses, 195, 133, 15, 12, 158, 12, and 48 SNPs were 
selected as IVs for breast, colorectal, lung, ovarian, pros-
tate, renal cell, and testicular germ cell cancers, respec-
tively (Additional file 1: Table S5). Utilizing these IVs and 
the IVW method, none of the 94 associations showed the 
possibility of reverse causation (all P > 0.05) (Additional 
file 1: Table S3).

Replication analysis using an independent plasma 
metabolite GWAS dataset
Of the 64 unique metabolites included in the 94 signifi-
cant associations, 44 metabolites in 64 associations had 
available data in the CLSA study. After selecting IVs 
using the same criteria, MR analyses were performed 
using the same cancer GWAS data with IVW as the 
primary method, supplemented by weighted median, 
Egger regression, and MR-PRESSO. Remarkably, all but 
2 of these 64 associations showed an association direc-
tion that is consistent with those observed analyses using 
EPIC-Norfold and INTERVAL data, and 54 of them 
(84.4%) even reached the nominal significance of P < 0.05 
(Additional file 1: Table S6).

MVMR analyses
To uncover metabolites that might be directly associ-
ated with cancer risk independent of other metabolites, 
we conducted MVMR analyses. For each cancer type, IVs 
for all significant associations identified in univariate MR 
analyses were included in MVMR analyses using the IVW 
model. A total of 21 metabolites were found to be inde-
pendently associated with cancer risk at MVMR P < 0.05, 
including 7 associated with breast cancer risk, 5 associ-
ated colorectal cancer risk, 2 associated with lung cancer 
risk, 3 associated with ovarian cancer risk, 3 associated 
with prostate cancer risk, and 1 associated with testicular 
germ cell cancer risk (Additional file 1: Table S7).

Genetic correlation and colocalization analyses
Among the 94 identified significant associations, LDSC 
analyses detected nominally significant (P < 0.05) genetic 
correlations between seven metabolite-cancer pairs 
(Additional file 1: Table S8). This result suggests that for 
most of our identified significant associations, the causal 
effects were unlikely to be confused by the coheritabil-
ity between metabolites and cancer risk. On the other 
hand, in colocalization analyses, 70 (74.5%) of these 94 
metabolite-cancer pairs showed a moderate colocaliza-
tion with (PP4 > 0.5) in at least 1 locus where their IVs 
reside (Additional file  1: Table  S9), indicating the exist-
ence of shared causal variants between metabolites and 
cancer risk in these genomic regions. Among these 70 

metabolite-cancer pairs, the median percentage of IVs 
whose loci exhibited colocalization signals was 50.0% 
(IQR 20.0–68.1%).

Discussion
In this comprehensive MR study empowered by the 
unprecedented resources of large-scale GWAS data, 
we discovered 94 significant associations indicating the 
potential causal influences of 66 unique plasma metab-
olites on the risk of 7 cancers. Over two-thirds of these 
metabolites were exclusively identified for specific can-
cer types. Of the 64 associations eligible for external 
validation analyses, nearly 85% (54) were successfully 
replicated. Further, MVMR analyses revealed that 21 of 
these 66 metabolites likely have direct effects on cancer 
risk. These findings provide additional insights into the 
complex interplay between genetics and metabolites in 
cancer development, fostering the development of inno-
vative strategies for cancer prevention and treatment.

Developing effective strategies for cancer risk assess-
ment and prevention is critically important. The emer-
gence of metabolomics technologies has fueled interest 
in exploring the clinical utility of circulating metabo-
lites as a non-invasive biomarker, given their ability to 
reflect both endogenous and exogenous physiological 
processes [18, 44]. Metabolic molecules, such as those 
involved in nucleotide metabolism, have shown poten-
tial as therapeutic targets in impeding tumor progres-
sion in preclinical studies [45]. Although previous studies 
have identified metabolites involved in cancer mecha-
nisms, their role in risk assessment and prevention was 
constrained by unclear causal links [46]. Leveraging 
recent large metabolite GWAS data, well-powered can-
cer GWAS data, and the MR framework, we systemati-
cally explored the potential causal relationship between 
plasma metabolites and the risk of common cancers. Our 
findings, if future validated by future case-control stud-
ies nested in large population-based cohorts, hold the 
potential to significantly contribute to the development 
of metabolites-based panels for cancer risk stratification 
and the identification of new therapeutic targets, thereby 
substantially improving cancer management and treat-
ment strategies.

Although the majority of the 94 significant metabo-
lite-cancer associations were first reported by our study, 
several of them are in line with the findings from previ-
ous studies. The negative association between isovaler-
ylcarnitine, a specific activator of high calcium [47], and 
lung cancer risk is consistent with a recent report based 
on both MR and nested case-control investigations. The 
4-guanidinobutanoate, an intermediate product in the 
polyamine synthesis pathway, was found to be associated 
with increased renal cell cancer risk in our study. This 
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metabolite was previously reported to be correlated with 
an increased estimated glomerular filtration rate (eGFR), 
indicating its possible role in kidney dysfunction [48]. 
Oxidized Cys-Gly, which showed protective effects on 
prostate cancer risk in the current study, was previously 
found to be associated with a decreased risk of gastric 
cardia adenocarcinoma [49]. All of these showcase the 
validity of our findings.

We found 22 metabolites each showing associations 
with more than one cancer type. Interestingly, 11 of them 
were spontaneously associated with the increased risk 
of both lung cancer and colorectal cancer. These results 
might be partially explained by their shared metabolic-
related risk factors, such as physical inactivity [50, 51] 
and a diet low in fiber [52, 53]. Future studies are needed 
to appraise the putative shared genetic and metabolic 
architecture of these two cancers. On the other hand, 
some metabolites showed contradictory effects on dif-
ferent cancers, such as N6-carbamoylthreonyladenosine, 
which was linked to an elevated risk of lung cancer and 
colorectal cancer but a reduced risk of breast cancer. This 
metabolite was previously correlated with elevated blood 
interleukin-6 in older adults, which was associated with 
an increased risk of cancer and mortality [54]. The pos-
sible protective effects of this metabolite on breast cancer 
need further investigation.

The human metabolome is profoundly influenced 
by a wide range of endogenous and exogenous factors, 
including genetic as well as dietary-, drug-, and disease-
related influences, making etiologic studies interrogat-
ing its impacts on various cancers extremely difficult. 
MR largely overcomes those by relying upon the random 
assignment of alleles at conception, yet it can yield unbi-
ased causal estimates when its assumptions are strictly 
followed [19]. In addition, we utilized data from the larg-
est GWAS of untargeted plasma metabolome and can-
cers to date, which ensured unparalleled statistical power 
for selecting robust IVs with high-accuracy associa-
tion estimates for MR analyses. Furthermore, a series of 
complementary analyses were performed to strengthen 
the reliability and robustness of the findings, including 
different MR approaches to account for the potential 
violation of different MR assumptions, LOO  analyses 
to detect associations driven by a single IV, and reverse 
MR to assess the possibility of reverse causation. Finally, 
nearly 85% of significant associations that were eligible 
for external validation were successfully replicated, high-
lighting the robustness of our findings.

Our study has limitations. First, both metabolites 
and cancer GWASs focused on individuals of Euro-
pean ancestry due to the small sample sizes of such 
datasets in understudied populations. This hampered 

the evaluation of racial/ethnic disparities in metab-
olite-cancer associations. Second, using sex-specific 
GWAS for metabolites is ideal for sex-specific can-
cers; however, such data were not released by either 
the EPIC-Norfolk and INTERVAL study or the CLSA 
study [14, 17]. Then, investigating metabolites in can-
cer-relevant normal tissues would provide more etio-
logical insights. However, metabolomic profiling of 
solid tissues remains a challenging task. It is well-rec-
ognized that for many metabolites, plasma levels rep-
resent the aggregation of tissue levels [18]. Therefore, 
the associations observed in plasma-based analyses 
should at least partially reflect the carcinogenic roles 
of these metabolites in tissues. Further, population-
based cohort studies of measured plasma metabolite 
levels and cancer risk, as well as in vitro investigations 
of the functions of metabolites in cell lines or animal 
models, are ideal to validate our findings. However, we 
were unable to carry out such studies due to the una-
vailability of related resources.

Conclusions
In this systemic MR study, we unveiled compelling evi-
dence supporting putative causal links between 66 
plasma metabolites and the risk of seven cancers, a large 
proportion of which were successfully replicated. Our 
results contribute to an advanced understanding of the 
crucial role of circulating metabolites in cancer genetics 
and biology. The utility of these metabolites in cancer risk 
assessment and prevention merits further investigation.
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PRACTICAL  Prostate Cancer Association Group to Investigate Cancer Asso-

ciated Alterations in the Genome
TCC   Testicular Cancer Consortium
TRICL-ILCCO  Transdisciplinary Research of Cancer in Lung of the Interna-

tional Lung Cancer Consortium



Page 15 of 16Chen et al. BMC Medicine           (2024) 22:90  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 024- 03272-8.

Additional file 1: Table S1. Information on genome-wide association 
studies (GWAS) of cancers among individuals of European ancestry. 
Table S2. Summary statistics of instrumental variables (IVs) for the 94 
significant associations identified in primary Mendelian randomization 
(MR) analyses. Table S3. Significant associations identified in primary MR 
analyses using the inverse-variance weighted (IVW) method. Table S4. 
MR results based on instrumental variables (IVs) selected under a more 
stringent threshold (P < 5 ×  10–8 & LD  r2 < 0.001) for the 94 significant 
associations identified in primary analyses. Table S5. Summary statistics 
of instrumental variables (IVs) used for reverse Mendelian randomization 
(MR) analyses for the 94 significant associations identified in primary 
analyses. Table S6. Replication analyses results using an independent 
metabolite GWAS dataset for the 94 significant associations identified in 
primary analyses. Table S7. Twenty-one associations that remained sig-
nificant in Multivariable MR (MVMR) analyses. Table S8. Seven metabolite-
cancer pairs showing a nominally significant genetic correlation. Table S9. 
Colocalization analyses for the 94 significant associations identified in 
primary analyses.

Additional file 2: Fig. S1. Scatter plots of the identified 94 significant 
metabolite-cancer associations.

Acknowledgements
The acknowledgments to GWAS consortia were described in detail in Addi-
tional file 1: Table S1. Data analyses were partially conducted on the Rivanna 
High-Performance Computing system at the University of Virginia.

Authors’ contributions
YY and WL: conceptualization, supervision, validation, investigation, method-
ology, writing—review, and editing. YY, WL, and YC: funding acquisition. YC: 
project administration, formal analysis, visualization, writing—original draft, 
and writing—review. ZC and YK: methodology and data curation. HC and SL: 
visualization, validation, writing—review, and editing. JT, YX, and DL: investiga-
tion, writing—review, and editing. GW and YQ: data curation and writing—
review. All authors contributed to the planning, execution, and analysis of the 
study and reviewed and approved the final submitted version.

Author’s Twitter handles
@YaohuaYang_1989 (Yaohua Yang).

Funding
Y. Yang was supported partially by the National Cancer Institute (No. 
R00CA248822). W. Li was supported by the National Natural Science Founda-
tion of China (No. 92159302). Y. Chen was supported by the National Natural 
Science Foundation of China (No. 82300011) and the Sichuan Science and 
Technology Support Project (No. 2022NSFSC1516). The sponsors had no 
role in the study design; in the collection, analysis, or interpretation of the 
data; in the writing of the report; or in the decision to submit the paper for 
publication.

Availability of data and materials
All used in the present study are publicly available. The original repositories 
of these data are described in the “Methods” section and Additional file 1: 
Table S1. Data that could be used to replication our findings is available in 
Additional file 1: Table S2 and S5.

Declarations

Ethics approval and consent to participate
All the data used in this study were acquired from publicly available genome-
wide association study summary statistics. No new data was collected, and no 
new ethical approval was needed.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Institute of Respiratory Health, Frontiers Science Center for Disease-Related 
Molecular Network, West China Hospital, Sichuan University, Guoxue Alley 
37, Chengdu, Sichuan, China. 2 Department of Respiratory and Critical Care 
Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 
3 Center for Public Health Genomics, Department of Public Health Sciences, 
UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, 
560 Ray C. Hunt Dr., Rm 4408, Charlottesville, VA, USA. 4 Department of Public 
Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, 
University of Virginia, Charlottesville, VA, USA. 5 Innovation Laboratory for Preci-
sion Diagnostics, Precision Medicine Research Center, Precision Medicine 
Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 
Chengdu, Sichuan, China. 

Received: 7 September 2023   Accepted: 22 January 2024

References
 1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA-Cancer 

J Clin. 2023;73(1):17–48.
 2. Cao M, Li H, Sun D, He S, Yan X, Yang F, et al. Current cancer burden 

in China: epidemiology, etiology, and prevention. Cancer Biol Med. 
2022;19(8):1121.

 3. Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epi-
demiological trends, risk factors, screening and prevention. Nat Rev Clin 
Oncol. 2023;20(5):338–49.

 4. Conti DV, Darst BF, Moss LC, Saunders EJ, Sheng X, Chou A, Schumacher 
FR, Olama AAA, Benlloch S, Dadaev T, et al. Trans-ancestry genome-wide 
association meta-analysis of prostate cancer identifies new susceptibility 
loci and informs genetic risk prediction. Nat Genet. 2021;53(1):65–75.

 5. Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit S, 
Díez-Obrero V, Hsu L, Fernandez-Tajes J, Palles C. Deciphering colorectal 
cancer genetics through multi-omic analysis of 100,204 cases and 154,587 
controls of European and east Asian ancestries. Nat Genet. 2023;55(1):89–99.

 6. Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, et al. 
Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 
controls identifies new susceptibility loci contributing to lung cancer. Nat 
Genet. 2022;54(8):1167–77.

 7. Pluta J, Pyle LC, Nead KT, Wilf R, Li M, Mitra N, Weathers B, D’Andrea K, 
Almstrup K, Anson-Cartwright L, et al. Identification of 22 susceptibil-
ity loci associated with testicular germ cell tumors. Nat Commun. 
2021;12(1):4487.

 8. Wishart DS. Metabolomics for investigating physiological and patho-
physiological processes. Physiol Rev. 2019;99(4):1819–75.

 9. van der Spek A, Stewart ID, Kühnel B, Pietzner M, Alshehri T, Gauß F, Hysi 
PG, MahmoudianDehkordi S, Heinken A, Luik AI. Circulating metabo-
lites modulated by diet are associated with depression. Mol Psychiatry. 
2023;28(9):3874–87.

 10. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: 
still emerging. Cell Metab. 2022;34(3):355–77.

 11. Zeleznik OA, Eliassen AH, Kraft P, Poole EM, Rosner BA, Jeanfavre S, Deik 
AA, Bullock K, Hitchcock DS, Avila-Pacheco J, et al. A prospective analysis 
of circulating plasma metabolites associated with ovarian cancer risk. 
Cancer Res. 2020;80(6):1357–67.

 12. Platten M, Nollen EAA, Rohrig UF, Fallarino F, Opitz CA. Tryptophan 
metabolism as a common therapeutic target in cancer, neurodegenera-
tion and beyond. Nat Rev Drug Discov. 2019;18(5):379–401.

 13. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, Arnold M, 
Erte I, Forgetta V, Yang TP, et al. An atlas of genetic influences on human 
blood metabolites. Nat Genet. 2014;46(6):543–50.

 14. Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakani-
shi T, Cerani A, Liang KYH, Yoshiji S, Willett JDS, et al. Genomic atlas of 
the plasma metabolome prioritizes metabolites implicated in human 
diseases. Nat Genet. 2023;55(1):44–53.

 15. Yin X, Chan LS, Bose D, Jackson AU, VandeHaar P, Locke AE, Fuchsberger C, 
Stringham HM, Welch R, Yu K, et al. Genome-wide association studies of 

https://doi.org/10.1186/s12916-024-03272-8
https://doi.org/10.1186/s12916-024-03272-8


Page 16 of 16Chen et al. BMC Medicine           (2024) 22:90 

metabolites in Finnish men identify disease-relevant loci. Nat Commun. 
2022;13(1):1644.

 16. Kettunen J, Demirkan A, Wurtz P, Draisma HH, Haller T, Rawal R, Vaarhorst 
A, Kangas AJ, Lyytikainen LP, Pirinen M, et al. Genome-wide study for cir-
culating metabolites identifies 62 loci and reveals novel systemic effects 
of LPA. Nat Commun. 2016;7:11122.

 17. Surendran P, Stewart ID, Au Yeung VPW, Pietzner M, Raffler J, Worheide 
MA, Li C, Smith RF, Wittemans LBL, Bomba L, et al. Rare and common 
genetic determinants of metabolic individuality and their effects on 
human health. Nat Med. 2022;28(11):2321–32.

 18. Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, 
Carstensen M, Peters A, Rathmann W, Roden M. The human blood metab-
olome-transcriptome interface. PLoS Genet. 2015;11(6):e1005274.

 19. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 
2017;318(19):1925–6.

 20. Boef AG, Dekkers OM, le Cessie S. Mendelian randomization studies: a 
review of the approaches used and the quality of reporting. Int J Epide-
miol. 2015;44(2):496–511.

 21. Zhao H, Wu S, Luo Z, Liu H, Sun J, Jin X. The association between circulat-
ing docosahexaenoic acid and lung cancer: a Mendelian randomization 
study. Clin Nutr. 2022;41(11):2529–36.

 22. Liu J, Zhou H, Zhang Y, Huang Y, Fang W, Yang Y, Hong S, Chen G, Zhao S, 
Chen X, et al. Docosapentaenoic acid and lung cancer risk: a Mendelian 
randomization study. Cancer Med. 2019;8(4):1817–25.

 23. Yun Z, Guo Z, Li X, Shen Y, Nan M, Dong Q, Hou L. Genetically predicted 
486 blood metabolites in relation to risk of colorectal cancer: a Mendelian 
randomization study. Cancer Med. 2023;12(12):13784–99.

 24. Burgess S, Thompson SG. Bias in causal estimates from Mendelian rand-
omization studies with weak instruments. Stat Med. 2011;30(11):1312–23.

 25. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal 
pleiotropy in causal relationships inferred from Mendelian randomization 
between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

 26. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through Egger 
regression. Int J Epidemiol. 2015;44(2):512–25.

 27. Sanderson E, Spiller W, Bowden J. Testing and correcting for weak and 
pleiotropic instruments in two-sample multivariable Mendelian randomi-
zation. Stat Med. 2021;40(25):5434–52.

 28. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, Jiang X, 
O’Mara TA, Zhao N, Bolla MK, et al. Genome-wide association study identi-
fies 32 novel breast cancer susceptibility loci from overall and subtype-
specific analyses. Nat Genet. 2020;52(6):572–81.

 29. Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit 
S, Diez-Obrero V, Hsu L, Fernandez-Tajes J, Palles C, et al. Deciphering 
colorectal cancer genetics through multi-omic analysis of 100,204 cases 
and 154,587 controls of European and east Asian ancestries. Nat Genet. 
2023;55(1):89–99.

 30. Scelo G, Purdue MP, Brown KM, Johansson M, Wang Z, Eckel-Passow 
JE, Ye Y, Hofmann JN, Choi J, Foll M, et al. Genome-wide association 
study identifies multiple risk loci for renal cell carcinoma. Nat Commun. 
2017;8:15724.

 31. Phelan CM, Kuchenbaecker KB, Tyrer JP, Kar SP, Lawrenson K, Winham SJ, 
et al. Identification of 12 new susceptibility loci for different histotypes of 
epithelial ovarian cancer. Nat Genet. 2017;49(5):680–91.

 32. Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut 
microbiota and cancers: a two-sample Mendelian randomisation study. 
BMC Med. 2023;21(1):1–14.

 33. Choi KW, Chen C-Y, Stein MB, Klimentidis YC, Wang M-J, Koenen KC, et al. 
Assessment of bidirectional relationships between physical activity and 
depression among adults: a 2-sample mendelian randomization study. 
JAMA Psychiat. 2019;76(4):399–408.

 34. Koppenol W, Bounds P, Dang C. Otto Warburg’s contributions to cur-
rent concepts of cancer metabolism, 117. Cuezva JM, Chen G, Alonso 
AM, et al., The bioenergetic signature of lung adenocarcinomas is a 
molecular marker of cancer diagnosis and prognosis. Carcinogenesis. 
2004;25:1157–63.

 35. Pierce BL, Burgess S. Efficient design for Mendelian randomization 
studies: subsample and 2-sample instrumental variable estimators. Am J 
Epidemiol. 2013;178(7):1177–84.

 36. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data 
Mendelian randomization via the zero modal pleiotropy assumption. Int J 
Epidemiol. 2017;46(6):1985–98.

 37. Li Y, Liu H, Ye S, Zhang B, Li X, Yuan J, Du Y, Wang J, Yang Y. The effects of 
coagulation factors on the risk of endometriosis: a Mendelian randomiza-
tion study. BMC Med. 2023;21(1):195.

 38. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin 
C, Burgess S, Bowden J, Langdon R, et al. The MR-base platform sup-
ports systematic causal inference across the human phenome. Elife. 
2018;7:e34408.

 39. Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in 
Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.

 40. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, 
ReproGen C, Psychiatric Genomics C, Genetic Consortium for Anorexia 
Nervosa of the Wellcome Trust Case Control C, Duncan L, et al. An atlas 
of genetic correlations across human diseases and traits. Nat Genet. 
2015;47(11):1236–41.

 41. Zuber V, Grinberg NF, Gill D, Manipur I, Slob EA, Patel A, Wallace C, Burgess 
S: Combining evidence from Mendelian randomization and colocaliza-
tion: review and comparison of approaches. Am J Human Genet 2022.

 42. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, 
Wallace C, Plagnol V. Bayesian test for colocalisation between pairs 
of genetic association studies using summary statistics. PLoS Genet. 
2014;10(5):e1004383.

 43. Chen J, Xu F, Ruan X, Sun J, Zhang Y, Zhang H, Zhao J, Zheng J, Larsson 
SC, Wang X, et al. Therapeutic targets for inflammatory bowel disease: 
proteome-wide Mendelian randomization and colocalization analyses. 
EBioMedicine. 2023;89:104494.

 44. Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabo-
lites: discovery of biomarkers and therapeutic targets. Signal Transduct 
Target Ther. 2023;8(1):132.

 45. Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in 
the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–62.

 46. Elia I, Haigis MC. Metabolites and the tumour microenvironment: from 
cellular mechanisms to systemic metabolism. Nat Metab. 2021;3(1):21–32.

 47. Pontremoli S, Melloni E, Viotti P, Michetti M, Di Lisa F, Siliprandi N. Isovaler-
ylcarnitine is a specific activator of the high calcium requiring calpain 
forms. Biochem Biophys Res Commun. 1990;167(1):373–80.

 48. Suhre K, Dadhania DM, Lee JR, Muthukumar T, Chen Q, Gross SS, Suthan-
thiran M. Kidney allograft function is a confounder of urine metabolite 
profiles in kidney allograft recipients. Metabolites. 2021;11(8):533.

 49. Miranti EH, Freedman ND, Weinstein SJ, Abnet CC, Selhub J, Murphy 
G, Diaw L, Männistö S, Taylor PR, Albanes D. Prospective study of 
serum cysteine and cysteinylglycine and cancer of the head and neck, 
esophagus, and stomach in a cohort of male smokers. Am J Clin Nutr. 
2016;104(3):686–93.

 50. Bade BC, Thomas DD, Scott JB, Silvestri GA. Increasing physical activity 
and exercise in lung cancer: reviewing safety, benefits, and application. J 
Thorac Oncol. 2015;10(6):861–71.

 51. Morris JS, Bradbury KE, Cross AJ, Gunter MJ, Murphy N. Physical activity, 
sedentary behaviour and colorectal cancer risk in the UK Biobank. Br J 
Cancer. 2018;118(6):920–9.

 52. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, 
et al. Integrative proteomic characterization of human lung adenocarci-
noma. Cell. 2020;182(1):245–61 (e217).

 53. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat 
T. Dietary fibre, whole grains, and risk of colorectal cancer: systematic 
review and dose-response meta-analysis of prospective studies. BMJ. 
2011;10:343.

 54. Lustgarten MS, Fielding RA. Metabolites associated with circulating inter-
leukin-6 in older adults. J Gerontol A Biol Sci Med Sci. 2017;72(9):1277–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Plasma metabolites and risk of seven cancers: a two-sample Mendelian randomization study among European descendants
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study design
	Exposure data
	Outcome data
	Selection of genetic IVs
	MR analysis
	Complementary, sensitivity, and reverse MR analyses
	Power calculation
	Multivariable MR
	Genetic correlation and colocalization analysis

	Results
	Genetic IVs
	Overall MR results
	Metabolites exclusively associated with the risk of a specific cancer
	Metabolites associated with the risk of multiple cancers

	Complementary, sensitivity, and reverse MR analyses
	Replication analysis using an independent plasma metabolite GWAS dataset
	MVMR analyses
	Genetic correlation and colocalization analyses

	Discussion
	Conclusions
	Acknowledgements
	References


