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Abstract 

Background The specific microbiota and associated metabolites linked to non‑alcoholic fatty liver disease (NAFLD) 
are still controversial. Thus, we aimed to understand how the core gut microbiota and metabolites impact NAFLD.

Methods The data for the discovery cohort were collected from the Guangzhou Nutrition and Health Study (GNHS) 
follow‑up conducted between 2014 and 2018. We collected 272 metadata points from 1546 individuals. The meta‑
data were input into four interpretable machine learning models to identify important gut microbiota associated 
with NAFLD. These models were subsequently applied to two validation cohorts [the internal validation cohort 
(n = 377), and the prospective validation cohort (n = 749)] to assess generalizability. We constructed an individual 
microbiome risk score (MRS) based on the identified gut microbiota and conducted animal faecal microbiome trans‑
plantation experiment using faecal samples from individuals with different levels of MRS to determine the relationship 
between MRS and NAFLD. Additionally, we conducted targeted metabolomic sequencing of faecal samples to ana‑
lyse potential metabolites.

Results Among the four machine learning models used, the lightGBM algorithm achieved the best performance. 
A total of 12 taxa‑related features of the microbiota were selected by the lightGBM algorithm and further used to cal‑
culate the MRS. Increased MRS was positively associated with the presence of NAFLD, with odds ratio (OR) of 1.86 
(1.72, 2.02) per 1‑unit increase in MRS. An elevated abundance of the faecal microbiota (f__veillonellaceae) was asso‑
ciated with increased NAFLD risk, whereas f__rikenellaceae, f__barnesiellaceae, and s__adolescentis were associated 
with a decreased presence of NAFLD. Higher levels of specific gut microbiota‑derived metabolites of bile acids (tau‑
rocholic acid) might be positively associated with both a higher MRS and NAFLD risk. FMT in mice further confirmed 
a causal association between a higher MRS and the development of NAFLD.
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Conclusions We confirmed that an alteration in the composition of the core gut microbiota might be biologically 
relevant to NAFLD development. Our work demonstrated the role of the microbiota in the development of NAFLD.

Keywords Non‑alcoholic fatty liver disease, Gut microbiota feature, Gut metabolites, Machine learning algorithms, 
16S rRNA gene sequence

Background
Non-alcoholic fatty liver disease (NAFLD) is the most 
common chronic liver disease affecting 25% of general 
adults worldwide and is one of the major risk factors 
for various diseases, including cardiovascular diseases 
(CVDs) and liver cancers, resulting in an increasing num-
ber of global mortalities [1]. In addition to genetic predis-
position and diet, the gut microbiota has emerged as one 
of the environmental factors contributing to the devel-
opment of NAFLD [2]. Currently, there is no approved 
therapy; however, manipulating the gut microbiota in 
conjunction with lifestyle factors may present an alterna-
tive intervention for NAFLD.

The potential causal effect of the gut microbiota com-
position on the development of NAFLD was first revealed 
and supported by evidence from animal faecal micro-
biota transplantation experiments that induced hepatic 
macrovesicular steatosis in mice [3] and a population 
study that revealed a significant increase in the abun-
dance of alcohol-producing bacteria in non-alcoholic 
steatohepatitis (NASH) patient microbiomes, along with 
elevated blood ethanol concentrations [4]. Subsequently, 
numerous animal studies and a handful of human stud-
ies suggest the beneficial role of probiotics, prebiotics, 
or synbiotics in reshaping the gut microbiota composi-
tion and activities, thus improving the liver phenotype 
[5]. Several mechanisms have been proposed to explain 
the role of the gut microbiota in NAFLD development, 
including affecting the amount of energy absorbed from 
the diet, altering intestinal permeability to lead to bacte-
rial migration and the parallel release of toxic bacterial 
products, changing the expression of genes involved in 
de novo lipogenesis and metabolic signalling pathways, 
producing ethanol in the intestine, and interacting with 
innate immunity [5, 6].

In addition, the various metabolites produced by the 
gut microbiota may modulate NAFLD susceptibility, 
for example, fermentation of indigestible carbohydrates 
(e.g. dietary fibre) by gut microbiota yields metabolites 
such as short-chain fatty acids (SCFAs) [7], propionate, 
butyrate, and succinate [8], which might have beneficial 
roles in body weight control, inflammatory status, glu-
cose, and lipid homeostasis [9]. The dysregulation of 
bile acid metabolism in NAFLD may lead to increased 
energy expenditure and a chronic inflammatory state 
[10], while elevated production of deoxycholic acid in 

NASH patients, attributed to the enrichment abundance 
of bacteria producing secondary bile acids, inhibited FXR 
signalling, impeding lipid and glucose metabolism in the 
liver and intestine [11]. Dysregulation of amino acids and 
choline leads to lipid accumulation and chronic inflam-
mation [10].

Researchers worldwide have made great efforts to 
investigate what makes a ‘good’ gut microbiome in 
human [12], as has been done for NAFLD. Many epide-
miological studies have assessed the distribution of the 
gut microbiota between healthy individuals and NAFLD 
patients. Reduced bacterial α- or β-diversity in NAFLD 
patients has been observed in some, but not all studies 
[13–15]. For specific microbial taxa, a meta-analysis of 
54 studies (8894 participants) revealed the depletion of 
anti-inflammatory microbes (i.e. Ruminococcaceae and 
Coprococcus) and the enrichment of proinflammatory 
microbes (i.e. Fusobacterium and Escherichia) in patients 
with NAFLD [16]; however, there was significant inter-
study heterogeneity, and most of the previous evidence 
was based on cross-sectional studies with limited sample 
sizes.

Another limitation of most of the previous studies is 
the application of traditional statistical approaches which 
typically consider the effects of each bacterial popula-
tion separately but do not adequately account for the 
interactions among the microbiota, even interactions 
with multiple lifestyle factors, complex laboratories, and 
clinical parameters [17]. The development of interpret-
able machine learning (ML) algorithms based on bacte-
rial abundance has made significant progress [18], and 
these algorithms have emerged as useful tools for iden-
tifying gut microbiome features and aided in the diagno-
sis of specific diseases, such as type 2 diabetes (T2DM) 
[19] and cancer [17]. A nested case–control study with 90 
pairs of matched participants with/without NAFLD pro-
gression provided evidence of the association between 
NAFLD progression and gut microbiota features iden-
tified by random forest (RF) [20]. However, additional 
systematic comparisons of ML algorithms are needed to 
explore the association between NAFLD development 
and faecal microbiota signatures.

This study aimed to identify the human gut microbi-
ota features associated with NAFLD based on different 
machine learning models (RF, support vector machine 
(SVM), logistic regression, and lightGBM models). We 
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also examined whether the selected features in the model 
were biologically relevant to faecal or serum metabolites. 
In addition, an animal model involving faecal microbiota 
transplantation (FMT) was used to verify the causal effect 
of gut microbiota from NAFLD patients on the liver phe-
notype in high-fat diet-induced NAFLD mice.

Methods
Study design and oversight
The present study, outlined as a flow chart in Fig. 1, can 
be divided into the following steps: participant selec-
tion, data collection, ML algorithm construction, fea-
ture identification, correlation and logistic regression 
analyses, metabolomic analysis, and mouse validation. 
We constructed several distinct cohorts, including dis-
covery, internal validation (NAFLD diagnosed with 
magnetic resonance imaging [MRI]), and prospective 
validation cohorts for the development and validation of 
the method.

Study participants
The discovery set was built based on the Guangzhou 
Nutrition and Health Study (GNHS). A total of 4048 
participants aged 40–80 years were recruited from mul-
tiple communities in Guangzhou, China during 2008–
2013 through local advertisements, health lectures, and 
referral methods and followed up every 3  years [21]. 
All participants were invited by phone to Sun Yat-sen 
University for face-to-face interviews, specimen collec-
tion, and physical examination. For more details about 

GNHS, please refer to our previous articles [22]. Fae-
cal samples for multiomics assessments were collected 
during the period of follow-up spanning from 2014 
to 2018 (n = 1939). A total of 393 participants were 
excluded because they (i) lacked ultrasound diagnosed 
NAFLD data (n = 127); (ii) had a history of excessive 
alcohol consumption (≥ 30  g/day for men or ≥ 20  g/
day for women) (n = 86); (iii) used antibiotics within a 
month prior to the survey (n = 18); and (iv) were suffer-
ing from other diseases (e.g. chronic hepatitis [n = 72], 
cancer [n = 44], and hyperthyroidism [n = 86]). Ulti-
mately, 1546 participants were included in the discov-
ery cohort, 56.1% (867/1546) of the participants were 
diagnosed with NAFLD by abdominal ultrasonogra-
phy, whereas those without significant hepatic steato-
sis based on abdominal ultrasound (US) diagnosis were 
served as the controls (details are shown in Fig.  1A). 
The internal validation cohort included 377 partici-
pants who underwent MRI at the fourth follow-up 
(2019–2021) to confirm the NAFLD diagnosis. Moreo-
ver, a prospective internal validation cohort consisted 
of 749 individuals who were without NAFLD at base-
line based on the abdominal ultrasound examination 
were followed for a median of 8.7 years.

The study protocol of the GNHS project was approved 
by the Ethics Committee of the School of Public Health 
at Sun Yat-sen University (2,018,048) and registered in 
the ClinicalTrials.gov database (NCT03179657). All 
procedures adhered to the principles outlined in the 
Declaration of Helsinki. Written informed consent was 

Fig. 1 Flow chart. The flow chart in A shows the screening process used for the discovery cohort (Guangzhou Nutrition and Health Study), and B 
illustrates the study design
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obtained from all participants prior to the start of the 
investigation.

Collection and measurement of metadata
The metadata included 5 demographic characteristics, 
3 anthropometry factors, 5 blood parameters, 3 lifestyle 
habits, one physical activity, and 6 dietary indicators 
(additional details are shown in Table  1). Demographic 

characteristics and lifestyle habits were investigated 
via self-administered questionnaires. Participants were 
first asked whether they consumed alcohol or not, after 
which the frequency and amount of alcohol consumed 
were investigated. The average amount of alcohol (g/
week) = was calculated as the average alcohol consump-
tion frequency × average amount of alcohol consumed 
per drinking day [%ABV (alcohol by volume) × 0.79336 

Table 1 Characteristic of the participants

Continuous variables are presented as means ± standard deviation (SD) unless otherwise indicate; categorical variables are presented as number (percentage)

Abbreviations: BMI, body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein; MET, metabolic equivalent; TC, total cholesterol; TG, triglycerides

Discovery cohort Internal validation cohort Prospective 
validation 
cohort

No. of participants 1546 377 749

Non‑alcoholic fatty liver disease case subjects, n (%) 867 (56.1) 126 (33.4) 266 (35.5)

Age (years) 64.9 (5.9) 65.0 (5.1) 64.6 (6.1)

Sex, n (%)

 Female 1057(68.4) 277 (73.5) 523 (69.8)

 Male 489 (31.6) 100 (26.5) 226 (30.2)

Marital status, n (%)

 Married 1326 (85.8) 335 (88.9) 640 (85.4)

 others 216 (14.0) 42 (11.1) 109 (14.6)

Education, n (%)

 Middle school or less 419 (27.1) 87 (23.1) 208 (27.8)

 High school or professional college 706 (45.7) 175 (46.4) 339 (45.2)

 University 408 (26.4) 115 (30.5) 202 (27.0)

Income (yuan/month/person), n (%)

 ≤ 500 323 (20.9) 83 (22.0) 9 (1.2)

 501–1500 751 (48.6) 220 (56.4) 144 (19.2)

 1501–3000 69 (4.5) 8 (2.1) 337 (45.0)

 > 3000 368 (23.8) 62 (16.4) 259 (34.6)

BMI, kg/m2 23.5 ± 3.1 23.1 ± 3.0 22.3 ± 2.6

Waist circumference, cm 84.8 ± 8.9 83.9 ± 8.7 81.5 ± 8.3

Hip circumference, cm 91.5 ± 12.1 90.6 ± 7.7 89.9 ± 15.5

Fasting glucose, mmol/L 5.5 ± 1.3 5.5 ± 1.2 5.3 ± 1.2

TC, mmol/L 5.5 ± 1.1 5.6 ± 1.1 5.6 ± 1.1

LDL, mmol/L 3.6 ± 1.0 3.6 ± 1.0 3.7 ± 1.0

TG, mmol/L 1.6 ± 1.1 1.6 ± 1.3 1.4 ± 0.9

HDL, mmol/L 1.6 ± 1.1 1.6 ± 1.3 1.4 ± 0.9

Current smoking status, n (%) 110 (7.1) 17 (4.5) 51 (6.8)

Current tea drinking, n (%) 833 (53.9) 198 (52.5) 388 (51.8)

Current alcohol drinking, n (%) 110 (7.1) 17 (4.5) 51 (6.8)

Physical activity, MET 18.9 (6.9) 19.3 (7.0) 19.6 (7.0)

Total energy intake, kcal/day 1719.3 ± 581.2 1761.7 ± 503.1 1715.9 ± 581.2

Vegetable intake, g/day 332.5 ± 166.7 327.1 ± 160.4 334.1 ± 164.8

Fish intake, g/day 41.4 ± 42.2 44.3 ± 57.5 43.2 ± 51.9

Red and processed meat intake, g/day 80.3 ± 52.7 79.6 ± 43.6 82.9 ± 61.1

Fruit intake, g/day 152.7 ± 105.1 150.0 ± 107.7 151.3 ± 101.0

Yogurt intake, g/day (dry weight) 30.5 ± 46.2 29.2 ± 42.8 29.9 ± 43.4
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(g/mL) × volume (mL)]. Colorimetric methods were 
used to measure four blood lipids and sugar levels with 
a Hitachi 7600–010 automated analyser (Hitachi, Tokyo, 
Japan). Daily physical activity was assessed using the 
physical activity questionnaires (PAQs), and the meta-
bolic equivalent (MET) intensity was also calculated. 
Alcohol consumption was self-reported. Daily dietary 
intake was evaluated using the Food Frequency Ques-
tionnaire (FFQ).

Diagnosis of NAFLD
The NAFLD status was measured by abdominal ultra-
sound in the discovery and prospective internal valida-
tion cohorts. Experienced radiologists, blinded to all 
clinical and laboratory data, qualitatively assessed the 
liver fat content through a Doppler sonography machine 
(Sonoscape SSI-5500, Shenzhen, China) with a 3.5-MHz 
probe and evaluated the degree of steatosis semiquanti-
tatively (0 = absent, ≥ 1 = present) based on hepatorenal 
echo contrast, deep attenuation, liver brightness, and 
vascular sharpness according to the guidelines for the 
diagnosis of non-alcoholic fatty liver diseases in China 
[23]. We excluded other causes resulting in fatty liver 
diseases, such as secondary viral hepatitis, drug-induced 
liver disease, total parenteral nutrition, Wilson’s dis-
ease, or excessive alcohol consumption (> 140 g/week for 
men, > 70 g/week for women). One hundred participants 
were repeatedly evaluated via ultrasound among the 
operators and 34 participants were selected for validity 
evaluation with computed tomography (CT) examina-
tions; both showed good agreement (Spearman’s r = 0.911 
and 0.905, P < 0.001) [24].

The quantified liver fat and volume in the internal 
validation cohort were detected via hepatic MRI screen-
ing with magnetic resonance tomography 1.5  T MAG-
NETOM Aera and 3  T MAGNETOM Skyra (Siemens 
Healthcare, Erlangen, Germany). This procedure was 
conducted by the Universal Medical Imaging Diagnos-
tic Center (Guangzhou, China). With participants under 
fasting conditions and in the supine position, two MRI 
techniques were used according to the training and 
instructions provided by the manufacturers. Two trained 
image analysts evaluated the scanned images and calcu-
lated the proton density fat fraction (PDFF), and NAFLD 
was defined as a PDFF > 5% [25, 26].

Stool sample collection and DNA extraction
Stool samples were collected in a sterile container from 
participants in all cohorts at face-to-face follow-up [19]. 
The stool specimens were then stored at − 80  °C and 
transported to the laboratory within 4  h until further 
DNA extraction. Faecal bacterial DNA was extracted 
with a QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions 
and subsequently stored at − 20  °C for later library con-
struction, which was constructed by amplification of the 
extracted RNA via two polymerase chain reaction (PCR) 
procedures. The first PCR amplification of the V3-V4 
hypervariable region of the 16S rRNA gene was carried 
out with a mixture of samples, 1 × KAPA HiFi Hotstart 
ReadyMix, primers 341F (CCT ACG GGNGGC WGC AG) 
and 805R (GAC TAC HVGGG TAT CTA ATC C) in a T100 
PCR thermocycler (Bio-Rad). The product was then puri-
fied by first fixing it with magnetic beads, eluting impuri-
ties with alcohol, and resolubilizing it with nuclease-free 
water. The purified products were added to HiFi Hot-
start ReadyMix and a barcode for the second PCR and 
then purified as the first purification. The purified ampli-
cons were quantified using a Qubit quantification sys-
tem (Thermo Scientific, Wilmington, DE, US). Samples 
meeting the post-PCR quantification minimum (1.6  ng/
μL) were pooled in equimolar amounts and advanced for 
sequencing. The library was sequenced on the Illumina 
MiSeq platform (Illumina Inc, CA, USA) and paired-end 
reads of 2 × 250 bp were generated. Quality control (QC) 
and quality assurance (QA) metrics are maintained for all 
sample handling, processing, and storage procedures.

16S ribosomal RNA (16S rRNA) gene sequencing
Based on the Earth Microbiome Project (EMP) 16S 
rRNA gene Illumina Amplicon library preparation meth-
odology [27], paired-end reads were assigned to a sample 
based on their unique barcodes after truncating the bar-
code and primer sequence, after which they were assem-
bled into single contiguous sequences (contigs). Contigs 
shorter than 60 bp or containing ‘N’ were screened out, 
and other high-quality contigs with 97% nucleotide 
sequence identity or more were clustered as operational 
taxonomic units (OTUs) via the UPARSE pipeline8 (use-
arch v8.0.1517). OTU annotations were obtained by 
using the Ribosomal Database Project (RDP) classifier. 
Since the RDP classifier provides taxonomic classification 
only at the genus level, the NCBI collection of completed 
bacterial genomes was also compared to those sequences 
to infer species-level taxonomy.

Faecal metabolome profiling
The extraction of faecal metabolites from stool samples 
was conducted in line with prior research [19]. We per-
formed metabolic profiling of human faecal samples from 
the discovery cohort. Faecal metabolites were obtained 
by targeted metabolomics ultra-performance liquid chro-
matography with tandem mass spectrometry (UPLC–
MS/MS). The platform provides measurements of 198 
faecal metabolomes, including 15 subclasses. The frozen 
faecal samples stored at − 80  °C were thawed on ice to 
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minimize degradation of metabolites. Ten milligrams of 
the sample was mixed thoroughly with 25 μL of nuclease-
free water on a vortex mixer, followed by the addition of 
185 μL of cold acetonitrile-methanol (8:2, v/v) for mix-
ing and centrifugation to extract the metabolite samples. 
Thirty microlitres of the supernatant was then derivatized 
with 20 μL of derivative reagent on a Biomek 4000 work-
station (Biomek 4000, Beckman Coulter, Inc., Brea, CA, 
USA). After derivatization, the sample was diluted with 
ice-cold 50% methanol and stored at − 20  °C for 20 min 
and subsequently centrifuged. The supernatant was 
mixed with internal standard compounds in a 96-well 
plate. Serial dilutions of the derivatized stock standards 
were added to the left wells. A UPLC–MS/MS system 
(ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, 
MA, USA) was used for analysis, and the QuanMET soft-
ware (v2.0, Metabo-Profile, Shanghai, China) was used to 
process the raw UPLC–MS/MS data for peak integration, 
calibration, and quantification of each metabolite.

Machine learning algorithms
First, we performed the analyses in parallel using all four 
commonly used ML algorithms (RF, SVM, logistic regres-
sion, and lightGBM) to compare the performances of the 
different algorithms. The best performing model (Light-
GBM) was subsequently used to predict essential features 
of NAFLD based on 272 metadata variables from the 
discovery cohort. Second, participants of the discovery 
cohort were randomly grouped into training and test sets 
at a ratio of 8:2. The training set was subsequently used 
to construct the initial model by iterating 5000 times and 
employing tenfold cross-validation. Based on the per-
formance during cross-validation, we applied the opti-
mal parameter combination from the validation set to 
the final model. Receiver operating characteristic (ROC) 
curves were constructed, and the area under the receiver 
operating characteristic (AUC) was calculated to evalu-
ate the model performance. The hyperparameters were 
tuned to optimize the model. The variables in the valida-
tion cohort were imported into the optimized model to 
estimate the extrapolation of the model.

SHAP value construction and microbiome risk score (MRS) 
calculation
The Shapley additive explanation (SHAP) was applied to 
reveal the LightGBM algorithm results by quantifying the 
impact of each feature on the model prediction. SHAP 
values ranged from − 1 to 1, with values greater than 0 
indicating a promoting effect on NAFLD and vice versa 
[28]. A SHAP summary plot was first drawn to visualize 
the top 20 features contributing to NAFLD in patients 
with lightGBM, and to reveal the contributions of these 
features, a SHAP importance matrix plot was generated 

to depict the importance of each identified feature con-
tributing to NAFLD. The SHAP dependence plots of 
selected features were created to investigate how each 
feature influences the presence of NAFLD, presented as 
the SHAP value > 0 [29].

The microbiome risk score (MRS) was calculated 
according to the SHAP values of the gut microbiota 
selected by the LightGBM. The formula is as follows:

in which i represents individual i, MRSi refers to the MRS 
of the ith individual, j represents the jth gut microbiota, 
and sij refers to the MRS for the jth gut microbiota in the 
ith individual. The feature set contribution was computed 
by summing the MRS values per category. The higher 
the MRS is, the greater the risk of NAFLD. The median 
of MRS serves as a threshold for measuring the contribu-
tion of the microbiota to NAFLD incidence, in which val-
ues above the median indicate an elevated contribution 
to NAFLD and vice versa.

Gut microbiota transplantation
Distinct and representative stool samples were randomly 
collected from donors with low MRS, with high MRS but 
without NAFLD, or with high MRS accompanied with 
NAFLD in the discovery cohort. Detailed descriptions of 
faecal sample preparation and faecal microbiota trans-
plantation (FMT) are provided in Additional file 1.

The experimental protocol was approved by the Animal 
Use and Care Committee at the Medical College, Jinan 
University.

Statistical analysis
Both ML and feature selection were conducted using 
Python 3 and Scikit-Learn (version 0.21.2). Statisti-
cal analyses were performed using SPSS version 25.0 
(IBM Corp., Armonk, NY, USA), and visualization of the 
graphs was performed with R version 4.1.3 (www.r- proje 
ct. org). A P-value < 0.05 was considered to indicate statis-
tical significance.

Continuous variables are expressed as the mean ± SD, 
while categorical variables are shown as numbers (pro-
portions). Multivariate logistic regression was used to 
test the associations between the presence of NAFLD 
and the MRS and selected gut microbiota features 
selected by the LightGBM in the discovery, internal, and 
prospective cohorts. Model 1 was a crude model, and 
model 2 was first adjusted for sex and age. Model 3 was 
further adjusted for cofounders in model 2 plus marital 
status, education, income, smoking status, alcohol sta-
tus, tea drinking status, and total energy intake; model 

MRSi =

n

j=1

sijsij =
0, ifshapij ≤ 0

1, ifshapij > 0

http://www.r-project.org
http://www.r-project.org
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4 was additionally adjusted for body mass index (BMI). 
Odds ratios (ORs) and corresponding 95% confidence 
intervals (95% CIs) are expressed per 1 unit of MRS or 
per-1 SD change in the gut microbiota. The subjects were 
also divided into four quartiles (Q1–Q4) according to the 
MRS and multivariable logistic regression was performed 
across MRS quartiles, with the lowest quartile (Q1) serv-
ing as the reference group. Spearman correlation analysis 
was used to examine the relationship between host faecal 
metabolites and MRS or selected gut microbiota constit-
uents in the discovery cohort.

The screened differentially abundant metabolites 
were analysed via MetaboAnalyst 4.0 (https:// www. 
metab oanal yst. ca/) [30]. Prior to analysis, relative peak 
intensity data were log transformed and normalized to 
reduce variance between the samples. Principal compo-
nent analysis (PCA) based on the Bray–Curtis distance 
was first applied to reduce the unsupervised dimen-
sions of metabolites to profile the global metabolites of 
the samples. Student’s t-test (P < 0.05) and Benjamini–
Hochberg adjusted false discovery rate (FDR < 0.1) were 
used to initially identify significant metabolite changes 
among groups (higher MRS vs. lower MRS; NAFLD vs. 
controls) [31]. To determine the significant difference in 
metabolites (SDMs), fold change (the ratio of expression 
in metabolites between NAFLD patients/higher MRS 
and control group/lower MRS) > 2 or < 0.5 was used as a 
screening criterion for SMDs.

Results
Study design and characteristics
The details about the selection and number of partici-
pants and analyses for the discovery cohort and three 

validation cohorts are presented in the flow chart in 
Fig.  1B, with demographic and clinical characteristics 
shown in Table  1. The discovery cohort included 1546 
people, with a mean age of 64.9 ± 5.9  years and 68.4% 
females. NAFLD was detected in 56.1% of these partici-
pants. Compared to those in the discovery cohort, 377 
and 747 people in the internal and prospective validation 
cohorts tended to be younger (65.0 and 64.6  years) and 
less likely to have NAFLD (33.4% and 35.5%), respec-
tively; moreover, the distributions of sex, marital status, 
and education were similar among these cohorts.

Model performance and identification of important 
features
Figure  2A shows that the ROC curve showed that the 
lightGBM model had the best performance and achieved 
the highest AUC 0.829 in the discovery cohort, fol-
lowed by the support vector machine (AUC = 0.719), 
logistic regression (AUC = 0.694), and random forest 
(AUC = 0.654) models. With respect to the adjusted dis-
covery cohort and the other three validation cohorts, 
the LightGBM model had the highest predictability of all 
the trained deep-learning-based segmentation models, 
with AUCs between 0.762 and 0.984. Metrics for all four 
models in the four cohorts are provided in Additional 
file  2: Table  S1. A total of 272 features were gathered, 
after which the top 20 predictive variables were selected 
by the LightGBM machine learning algorithm, and these 
selected features reached an AUC of 0.815, indicating 
that the predictive capacity of these features was similar 
to that of the overall 272 inputted features (AUC = 0.829) 
(Additional file 2: Table S2).

Fig. 2 Results based on machine learning model output. A Evaluation of the four machine learning algorithms based on the area under the curve 
AUC of the ROC curve. B Importance matrix plot of the top 20 features selected based on LightGBM machine learning algorithms and SHAP value, 
showing the relative contribution of each variable to NAFLD. C SHAP summary plot of the top 20 features selected based on LightGBM machine 
learning algorithms and SHAP values, in which one dot per individual per feature is coloured in accordance with an attribution value, with red 
denoting a greater value and blue denoting a lower value. A higher SHAP value indicates a greater risk of NAFLD

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Using the importance matrix plot, we identified the 
top 20 features that had the greatest impact on the pre-
diction power of the model. As shown in Fig.  2B, the 
three features associated with the highest SHAP values 
for NAFLD risk were body mass index (BMI), total tri-
glyceride (TG) level, waist, fasting glucose (Glu) level, 
sex, 12 taxa-related features of the microbiota, and 
three food intake parameters (fish, yogurt, and vegeta-
ble intake). Figure 2C shows that the greater the SHAP 
values for BMI, TG concentration, waist circumference, 
glutamate intake, fish intake, and two microbial features 
(f_veillonellaceae and g_clostridiaceaeother) were, the 
greater the likelihood of NAFLD. Conversely, NAFLD 
was less likely to be detected when SHAP values for 
male sex, vegetable intake, and five microbial features 
(g__klebsiella, s__acidifaciens, s__adolescentis, s__bifido-
bacteriumother, and g__anaerostipes) increased. Addi-
tionally, there were low-to-moderate intercorrelations 
among a majority of the 12 selected taxa-related charac-
teristics (Additional file 2: Fig. S1).

Several optimal thresholds of these 20 selected fea-
tures are shown in the SHAP dependence plot, which 
was used to evaluate the marginal effect of the identified 
features on the prediction power of the LightGBM (Addi-
tional file  2: Fig. S2). We noticed that higher values for 
BMI, TG level, waist circumference, glucose, fish intake, 
and higher abundances of four microbiota (p__fuso-
bacteria, f__veillonellaceae, g__clostridiaceaeother, and 
f__rikenellaceae) might contribute to a greater NAFLD 
risk, whereas female, elevated vegetable intake, and 
higher abundances of f__barnesiellaceae, g__klebsiella, 
s__acidifaciens, o__turicibacterales, s__adolescentis, 

s__bifidobacteriumother, and g__anaerostipes, could 
reduce NAFLD risk.

Calculation of the MRS and its association with NAFLD
Based on 12 selected microbial features, we calcu-
lated the MRS (range 0–12) to evaluate the individual 
microbiome risk for NAFLD development (Table  2). 
According to our logistic regression analysis, there was 
a significant negative association between male sex and 
the MRS in the discovery cohort (coefficient r =  − 0.649; 
OR = 0.52 [95% CI 0.38, 0.71]; P < 0.001). In contrast, 
BMI and waist circumference were both positively asso-
ciated with MRS (Additional file  3: Table  S1), and the 
coefficient and odds ratio (OR) (95% CI) were 0.309 and 
1.36 (1.25, 1.48; P < 0.001) for BMI and 0.082 and 1.09 
(1.06, 1.11; P < 0.001) for waist circumference, respec-
tively (Additional file 3: Table S1).

According to our logistic regression analysis, a 1-unit 
change in the MRS was positively associated with an 
increase in odds of NAFLD in the discovery cohort 
(crude OR = 1.85 [95% CI 1.71, 1.99]; P < 0.001). This asso-
ciation persisted in model 3 which was adjusted for most 
potential predictors, including age, sex, marital status, 
education, income, smoking status, drinking status, tea 
status, and total energy intake (OR = 1.86 [95% CI 1.72, 
2.02]; P < 0.001). Similar results were also then observed 
in the internal validation cohort, in which the crude and 
multivariate ORs and their corresponding 95% CIs were 
1.21 (1.07, 1.36; P = 0.003) and 1.20 (1.06, 1.37; P = 0.004), 
respectively; in the prospective validation cohort, the 
crude and multivariate ORs and their corresponding 95% 
CIs were 1.73 (1.56, 1.92; P < 0.001) and 1.77 (1.58, 1.97; 

Table 2 List of components included in the microbiomes risk score (MRS) construction

The MRS is generated based on these 12 microbiome features

Abbreviation: MRS, microbiomes risk score

Microbiome Taxa annotation

f__barnesiellaceae k__Bacteria; p__Bacteroidota; c__Bacteroidia; o__Bacteroidales; f__Barnesiellaceae

p__fusobacteria k__Bacteria; p__Fusobacteria

g__klebsiella k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; f__Enterobacteriaceae; g__Klebsiella

f__veillonellaceae k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Veillonellaceae

g__clostridiaceaeother k__Bacteria; p__Terrabacteria group; c__Firmicutes; o__Clostridia; f__Eubacteriales; g__Clostridiaceaeother

s__acidifaciens k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; s__acidifaciens

o__turicibacterales k__Bacteria; p__Firmicutes; c__Bacilli; o__Turicibacterales

o__actinomycetales k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Actinomycetales

s__adolescentis k__Bacteria; p__Actinobacteria; c__Actinobacteria; o__Bifidobacteriales; f__Bifidobacteriaceae; g__Bifidobacterium; 
s__adolescentis

s__bifidobacteriumother k__Bacteria; p__Terrabacteria group; c__Actinobacteria; o__Actinomycetia; f__Bifidobacteriales; g__Bifidobacteriaceae; 
s__Bifidobacteriumother

g__anaerostipes k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Anaerostipes

f__rikenellaceae k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae
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P < 0.001), respectively (Fig. 3; Additional file 3: Table S2). 
According to the sensitivity analysis, the positive asso-
ciation between the MRS and the incidence of NAFLD 
remained significant in the discovery and internal valida-
tion cohorts in Model 4, which was further adjusted for 
BMI, suggesting the robustness of the results.

According to multivariate logistic regression using 
MRS quartiles, when setting Q1 of the MRS as a refer-
ence, higher MRS quartiles were positively associated 
with an elevated incidence of NAFLD in the discovery 
cohort across the four models, and the ORs and 95% 
CIs of Q4 in four models were 11.98 (8.60, 16.70), 18.86 
(12.53, 28.40), 11.93 (8.56, 16.63), and 16.92 (11.37, 
25.17) (all P values < 0.001). In agreement with the 
results of the discovery cohort, individuals in the high-
est quartile of the MRS in the internal validation cohort 
had significantly elevated likelihood of NAFLD (model 
1: OR = 3.50 [95% CI = 1.83, 6.71]; model 2: OR = 3.44 
[95% CI = 1.72, 6.86]; model 3: OR = 3.52 [95% CI = 1.83, 
6.75]; model 4: OR = 3.47 [95% CI = 1.75, 6.90]; all P val-
ues < 0.001). These positive associations between the 
MRS and NAFLD incidence were further validated in the 
prospective validation cohort (model 1: OR = 35.97 [95% 
CI = 16.00, 80.95]; model 2: OR = 42.64 [95% CI = 18.28, 
99.46]; model 3: OR = 11.93 [95% CI = 8.56, 16.63]; model 
4: OR = 16.92 [95% CI = 11.37, 25.17]; all P values < 0.001) 
(Additional file 3: Table S3).

The relationship between selected gut microbiota features 
and NAFLD
In terms of the relationships between the 12 identi-
fied microbiotal features and NAFLD, we found that a 
per SD change in the abundance of f__veillonellaceae 
was positively associated with a greater likelihood of 
NAFLD, and OR and 95% CIs were 1.29 (1.15, 1.44). 
Conversely, lower odds of NAFLD were detected in 
individuals with a greater abundance of f__rikenel-
laceae (OR = 0.81 [95% CI 0.74, 0.88]), f__barnesiel-
laceae (OR = 0.78 [95% CI 0.71, 0.85]), s__adolescentis 
(OR = 0.92 [95% CI 0.84, 1.00]) (Fig. 4; Additional file 4: 
Table  S1); however, when the microbiota was treated 
as a binary variable according to the SHAP value, 12 

microbiota were significantly associated with NAFLD 
(Additional file 4: Table S2 and Fig. S1).

Identification of significantly different metabolites (SDMs)
The PCA score plot of the faecal metabolites of the two 
groups (MRS > 5 vs. MRS ≤ 5) in the discovery cohort 
is shown in Additional file  5: Fig. S1. PC1 and PC2 
explained 26.1% and 6.4%, respectively, of the total vari-
ance. We further visualized the distribution of 101 signif-
icant metabolites (Student’s t-test P < 0.05, FDR < 0.1) in 
Additional file  5: Fig. S2. Moreover, volcano plot analy-
sis revealed that one downregulated (picolinic acid) and 
three upregulated metabolites (glycocholic, D_Maltose 
and alpha_lactose, and taurocholic acid) were signifi-
cantly differentially expressed (FDR < 0.10; Additional 
file 5: Fig. S3, Table S1). Among these genes, the picolinic 
acid had a negative  log2 FC (− 1.625 with FDR = 0.056). 
Among the three upregulated candidate metabolites, 
D_Maltose and alpha_Lactose had the highest  log2 FC 
(1.197 with FDR = 0.004), followed by glycocholic acid 
 (log2 FC = 1.160 with FDR = 0.003) and taurocholic acid 
 (log2 FC = 1.104 with FDR = 0.028) (Additional file  5: 
Table S1).

Subsequently, we used the same method as above 
to identify SDMs between patients with and with-
out NAFLD; one differentially abundant metabolite 
was found to be taurocholic acid  (log2 FC = 1.278 with 
FDR = 0.066; Student’s t-test: P = 0.017, FDR = 0.066; 
Additional file  5: Table  S2 and Fig. S4-6). Combining 
the above significant differentially abundant metabolites 
identified among MRS and NAFLD status groups, tauro-
cholic acid was ultimately recognized as a common dif-
ferentially abundant metabolite in our study.

Taurocholic acid was significantly associated with selected 
gut microbiota features
We further analysed the association of taurocholic 
acid with 12 selected gut microbiota (Additional file  5: 
Table S3). We noticed that 7 out of the 12 gut microbiota 
constituents were significantly correlated with tauro-
cholic acid, among which there were significant positive 
correlations with p__fusobacteria (coefficient r = 0.198) 

Fig. 3 Association of the microbiome risk score (MRS) with NAFLD risk in different cohorts Note: Logistic regression was used to estimate the odds 
ratio (OR) and 95% confidence interval (CI) of NAFLD per one unit change in the MRS, adjusting for age, sex, marital status, education, income, 
smoking status, drinking status, tea status, and total energy intake
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Fig. 4 Association of the microbiomes selected through machine learning with NAFLD risk in different cohorts. Note: Logistic regression was used 
to estimate the odds ratio (OR) and 95% confidence interval (CI) of NAFLD incidence per SD change in the microbiota, adjusting for age, sex, marital 
status, education, income, smoking status, drinking status, tea status, and total energy intake
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and g__clostridiaceaeother (coefficient r = 0.099), while 
they were inversely correlated with o__actinomycetales 
(coefficient r =  − 0.142), o__turicibacterales (coefficient 
r =  − 0.070), f__barnesiellaceae (coefficient r =  − 0.357), 
f__rikenellaceae (coefficient r =  − 0.345), and s__adoles-
centis (coefficient r =  − 0.085).

Mouse experiment validation
To evaluate the role of gut microbiota features in NAFLD 
pathogenesis, we applied an FMT mouse model of 
NAFLD. As shown in Additional file  1: Fig. S1 (A), the 
trend towards body weight gain was more evident in 
the high MRS + NAFLD group and high MRS + non-
NAFLD group than in the low MRS and control (only 
HFD) groups. Compared with those in the low MRS 
group, the body weight, liver weight, Lee’s obesity index, 
NAS score, and hepatic TG content increased in the high 
MRS + NAFLD and high MRS + non-NAFLD groups 
(Additional file 1: Fig. S1 B-F). According to the HE stain-
ing results, compared with those in the control group, 
the stool samples from both the high MRS + NAFLD and 
high MRS + non-NAFLD groups had more lipid droplets 
in the cells and exhibited a greater extent of liver stea-
tosis. In contrast, lipid accumulation within liver tissues 
was alleviated in the low MRS group (Additional file  1: 
Fig. S1 G).

Discussion
In this study, we identified 12 gut microbial taxa associ-
ated with NAFLD by using an interpretable ML algorithm 
and observed significant associations between NAFLD 
and gut microbiota signatures. Overall, we found that a 
greater abundance of p__fusobacteria and f__veillonel-
laceae might contribute to the development of NAFLD, 
while f__rikenellaceae, f__barnesiellaceae, and s__adoles-
centis might reduce the occurrence of NAFLD. We fur-
ther calculated the MRS according to our prior study [19] 
and found that a higher MRS was positively associated 
with a greater incidence of NAFLD; this MRS-NAFLD 
association was successfully replicated in the internal 
and prospective validation cohorts. We identified a fae-
cal metabolite of bile acids (taurocholic acid), which was 
positively correlated with a higher MRS and a greater 
risk of NAFLD. Moreover, the FMT experiment further 
demonstrated that stool samples from participants with 
a higher MRS could significantly exaggerate the increase 
in body weight, liver weight, hepatic TG content, Lee’s 
index, NAS, and the extent of liver steatosis.

Many epidemiological studies have reported altera-
tions in the gut microbiome composition among indi-
viduals with and without NAFLD, but the evidence has 
remained inconclusive. For the relative abundance of 
pathogenic bacteria, a case–control study involving 

25 NAFLD patients and 22 healthy subjects in Shang-
hai demonstrated that the abundance of fusobacteria 
was significantly greater in NAFLD patients than in the 
control group (P < 0.01) [32]. Animal models have con-
sistently shown an elevated abundance of fusobacteria 
in rats with HFD-induced NAFLD [33], or in mice fed 
a high-fat choline-deficient diet for 18  weeks [34]. This 
positive association might be partly explained by an 
increase in microbial gut toxins due to pathogens derived 
mainly from the Fusobacteria phylum, thus disrupting 
the balance of energy metabolism [32]. However, the 
decreased bacterial diversity and relative abundance of 
fusobacteria were observed in mice with NAFLD induced 
by a 6-month western diet (enriched with fat, sugar, and 
sucrose chow) [35]. Thus, further large-scale studies with 
homogenous patient cohorts and standardized methods 
are warranted to explore the effect of fusobacteria on the 
development of NAFLD.

In line with our findings, a previous case–control 
study showed that an increased abundance of Veillonel-
laceae was one of the most common changes reported in 
NAFLD patients [36]. An animal study further demon-
strated an elevated abundance of Veillonellaceae in rats 
with HFD- induced NAFLD [37]. In addition, after tak-
ing stool samples from 129 NAFLD and 75 non-NAFLD 
individuals fed a high- carbohydrate diet, a Korean study 
revealed that the Veillonellaceae could be regarded as 
one of the most vital microbial taxa and could signifi-
cantly improve the predictive value of NAFLD in the total 
population using a random forest model [38]. The Veil-
lonellaceae is a lactate-degrading microbe that obtains its 
carbon primarily from lactate [39]; it can produce endo-
toxin and cause immunoreaction [40], and the enrich-
ment of Veillonellaceae is also associated with metabolic 
syndrome [41]. Moreover, Veillonellaceae might be one 
of the contributing factors to fibrosis severity because 
it was found to be positively associated with serum-free 
fatty acids and significantly correlated with adipose tissue 
insulin resistance and glycosylated haemoglobin in non-
obese NAFLD patients [15]. Hence, Veillonellaceae might 
be used as a diagnostic marker in the NAFLD population.

In contrast, we noticed inverse associations between 
NAFLD and three gut microbiota, namely, f__rikenel-
laceae, f__barnesiellaceae, and s__adolescentis. Con-
sistent with our findings, a matched case–control study 
reported a reduced proportion of Rikenellaceae in 
NAFLD patients, compared to healthy controls [42]. An 
animal study by Chen H et al. [43] showed that Rikenel-
laceae was negatively associated with the serum param-
eters glucose, insulin, and lipid metabolism (triglycerides, 
TG; total cholesterol, TC) and liver function parameters 
(alanine aminotransferase, ALT; aspartate transami-
nase, AST) but was positively associated with improved 
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glucose tolerance and insulin sensitivity in HFD-induced 
NAFLD mice. The above evidence indicated that Rikenel-
laceae might effectively contribute to the balance 
between energy harvesting and hepatic metabolism, 
thereby inhibiting the development of NAFLD.

The abundance of the family barnesiellaceae was lower 
in NAFLD patients than in non-NAFLD patients in the 
present study. A recent study consistently revealed a 
decreased abundance of Barnesiella among NAFLD 
patients, compared to that in control and drug-induced 
liver injury groups [44]. This might be partly ascribed to 
its association with the production of short-chain fatty 
acids (SCFAs) [45], which might exert a beneficial effect 
against NAFLD progression [46]. However, notably few 
studies on the association between the abundance of 
Barnesiellaceae and NAFLD exist. We hypothesize that 
this microbiota signature could be negatively associated 
with NAFLD and could be regarded as s microbiota-
derived signature for reducing the possible development 
of NAFLD. With respect to s__adolescentis, we noticed 
that the gut microbiota was enriched in the non-NAFLD. 
A case–control study involving 75 children also indi-
cated that the abundance of adolescentis was signifi-
cantly decreased in NAFLD patients [47]. This microbial 
signature was also found to relieve NAFLD by increas-
ing the concentration of SCFAs in the intestines of mice 
[48]. Furthermore, adolescentis is an anti-inflammatory 
agent, and probiotics inhibit inflammation, regulate 
lipid metabolism, and alleviate NAFLD by increasing 
fibroblast growth factor 21 (FGF21) sensitivity [49, 50]. 
Adolescentis can reduce nuclear factor-kappa B (NF-κB) 
activation in an intestinal cell line (Caco2), limit the pro-
duction of lipopolysaccharide (LPS), contribute to the 
release of SCFAs in the gut, and subsequently alleviate 
the progression of NAFLD [51, 52].

Our results indicated that a combination of specific gut 
microbiota (presented as a higher MRS) may be a risk 
factor for NAFLD, and these findings were further repli-
cated in two validation cohorts, indicating the good pre-
dictive performance of our ML model. Although many 
ML methods are still opaque, the LightGBM model is 
characterized by its relatively fast speed, high efficiency, 
and excellent performance [53] because it can reduce 
the calculation cost of the gain for each split, grow trees 
leafwise and vertically, and accelerate the training pro-
cess compared to other decision tree algorithms [54]. A 
better predictive value of lightGBM after the comparison 
of the performance across different ML algorithms was 
reported by prior studies [54, 55] Similarly, our results 
also demonstrated the excellent performance of Light-
GBM, which could be superior to the other three algo-
rithms evaluated by us. Additionally, the SHAP value, 
which represents a predictor’s marginal contribution to 

the risk of a complication or outcome [56], was widely 
utilized for interpreting the interpretability of the ML. 
Microbial signatures with higher SHAP values were 
more relevant to the prediction of NAFLD. In addition 
to the specific gut microbial signatures mentioned above, 
the other seven identified gut microbiota (g__klebsiella, 
g__clostridiaceaeother, s__acidifaciens, o__turicibacte-
rales, o__actinomycetales, s__bifidobacteriumother, and 
g__anaerostipes) were further taken into consideration 
to calculate the MRS. A risk score was estimated based 
on the SHAP value for all 12 identified gut microbes 
and showed a superior prediction accuracy for T2DM 
compared with traditional methods [19]. Based on the 
advanced interpretable machine learning lightGBM and 
SHAP algorithms, the FMT was conducted, and it fur-
ther revealed that FMT of stool samples from humans 
with high MRS with or without NAFLD to germ-free 
mice could result in elevated levels of body weight, liver 
weight, Lee’s obesity index, NAS, and hepatic TG con-
tent, exacerbating NAFLD, whereas faecal transfer from 
those with low MRS may inversely reduce the levels of 
these parameters and alleviate NAFLD symptoms. Col-
lectively, our LightGBM algorithm and animal experi-
ments provided supporting evidence of a causal role for 
the alteration of the gut microbiota composition in the 
progression of NAFLD.

Accumulating evidence has shown that the gut micro-
biota might be involved in the aetiology of NAFLD. 
Specific faecal microbiota might increase intestinal per-
meability, which releases lipopolysaccharide (LPS) into 
the host and subsequently triggers systemic and tis-
sue inflammation, and immunity might be affected by 
microbial metabolites, such as trimethylamine N-oxide 
(TMAO), choline, ethanol, and bile acid signalling [2]. 
To further explore the potential mechanisms of action 
of faecal metabolites and pathways, we also investigated 
the metabolomic signatures associated with MRS or gut 
microbiota features. When combining the associations 
of MRS and NAFLD with different faecal metabolites, we 
found that the concentration of the faecal metabolite tau-
rocholic acid was positively correlated with a higher MRS 
and several NAFLD-promoted gut microbiota (p__fuso-
bacteria and g__clostridiaceaeother). Faecal microbiota 
dysbiosis is associated with altered bile acid homeostasis 
[57]. As bile acids are secreted into bile, they can further 
influence the development and progression of gastro-
intestinal and liver health by modifying the microbiota, 
altering the intestinal barrier function and modulating 
the innate immune system [58]. The bile acid profile of 
germ-free animals was dominated by taurine-conjugated 
bile acids (especially taurocholic acid and taurolycholic 
acid) [59]. However, the mechanism by which tauro-
cholic acid increases the incidence of NAFLD remains to 
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be elucidated. A prior animal model suggested that high 
plasma taurocholic acid levels may aggravate cholesterol-
induced triglyceride accumulation in the human normal 
immortalized hepatocyte cell line LO2, thus promoting 
the progression of non-alcoholic steatohepatitis—hepa-
tocellular carcinoma [60]. However, a limited number 
of studies have investigated the potential role of the gut 
metabolite of taurocholic acid in the development of 
NAFLD; thus, further investigations are warranted to 
unravel the mysteries of the associations between these 
associations.

This study has the following limitations. First, the 
main results were obtained from several middle-aged 
and elderly Chinese cohorts; thus, our results might not 
be generalizable to other ethnic and age groups. Second, 
the current study did not focus on coexisting fungal or 
viral communities other than gut bacterial communities. 
Third, as a result of this limited sample collection tech-
nique, several stool samples were not collected at either 
time point, leading to fewer patients having paired micro-
biota data. Finally, an analysis of the gut microbiota gen-
erally cannot distinguish the biogeography and dynamics 
of microbial populations in the gastrointestinal tract.

Conclusions
In summary, this study used the lightGBM-SHAP algo-
rithm to identify gut microbiota features and revealed 
that the presence of specific gut microbiota (p__fuso-
bacteria and f__veillonellaceae) was positively associated 
with NAFLD, but f__rikenellaceae, f__barnesiellaceae, 
and s__adolescentis were negatively associated with 
NAFLD. Both observational and experimental data illu-
minate the contribution of the MRS to the progression 
of NAFLD. Further large-scale studies with homogenous 
patient cohorts and standardized methods are neces-
sary to examine the biological relevance and mechanistic 
insights of gut metabolites (taurocholic acid) in NAFLD. 
Awareness of these associations is important for predict-
ing NAFLD through the gut microbiota.
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microbiomes and Taurocholic acid.
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