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Abstract 

Background The relaxation of the “zero-COVID” policy on Dec. 7, 2022, in China posed a major public health threat 
recently. Complete blood count test was discovered to have complicated relationships with COVID-19 after the infec-
tion, while very few studies could track long-term monitoring of the health status and identify the characterization 
of hematological parameters prior to COVID-19.

Methods Based on a 13-year longitudinal prospective health checkup cohort of ~ 480,000 participants in West China 
Hospital, the largest medical center in western China, we documented 998 participants with a laboratory-confirmed 
diagnosis of COVID-19 during the 1 month after the policy. We performed a time-to-event analysis to explore 
the associations of severe COVID-19 patients diagnosed, with 34 different hematological parameters at the baseline 
level prior to COVID-19, including the whole and the subtypes of white and red blood cells.

Results A total of 998 participants with a positive SARS-CoV-2 test were documented in the cohort, 42 of which 
were severe cases. For white blood cell-related parameters, a higher level of basophil percentage (HR = 6.164, 95% 
CI = 2.066–18.393, P = 0.001) and monocyte percentage (HR = 1.283, 95% CI = 1.046–1.573, P = 0.017) were found asso-
ciated with the severe COVID-19. For lymphocyte-related parameters, a lower level of lymphocyte count (HR = 0.571, 
95% CI = 0.341–0.955, P = 0.033), and a higher CD4/CD8 ratio (HR = 2.473, 95% CI = 1.009–6.059, P = 0.048) were found 
related to the risk of severe COVID-19. We also observed that abnormality of red cell distribution width (RDW), mean 
corpuscular hemoglobin concentration (MCHC), and hemoglobin might also be involved in the development 
of severe COVID-19. The different trajectory patterns of RDW-SD and white blood cell count, including lymphocyte 
and neutrophil, prior to the infection were also discovered to have significant associations with the risk of severe 
COVID-19 (all P < 0.05).
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Background
Throughout 2023, the world continued to face the chal-
lenges posed by the prolonged COVID-19 pandemic, 
which has now spanned 3 years. According to the World 
Health Organization (WHO) Coronavirus (COVID-19) 
Dashboard, as of February 17, 2023, there have been 
more than 756 million confirmed cases of COVID-19, 
including more than 6 million deaths globally [1]. Even 
though the severity and mortality of COVID-19 seem 
to be declined due to the mutation of variants, the large 
population base and numerous elder people with com-
plex comorbidities would still pose higher challenges for 
the government, healthcare systems, and researchers [2].

As one of the most common laboratory tests, a com-
plete blood count test was discovered to have complicated 
relationships with COVID-19 by numerous researchers. 
Several leukocyte counts, including lymphocyte, mono-
cyte, and neutrophil, were found altered after diagnosis 
of COVID-19 [3]. In particular, they play an important 
role in the hyperinflammatory state and cytokine storm, 
a lethal inflammatory situation in COVID-19 patients [4]. 
Furthermore, hemoglobin concentration was also found 
to decrease with disease severity for the increased levels 
of glycolytic intermediates and oxidation and fragmenta-
tion of membrane proteins in red blood cells [5].

However, most of the studies were limited due to cross-
sectional or hospital-based design after the infection [6, 
7]. Recently, increasing evidence tried to prove that the 
baseline health status prior to COVID-19 infection might 
also determine the severity and prognosis [8], whereas 
very few could track long-term monitoring of the health 
status prior to the infection.

Since the Chinese government lifted the “zero-COVID” 
restriction on Dec. 7, 2022, the Omicron variant of 
COVID-19 has spread rapidly across the country and 
the outbreak was predicted to peak in late December [9, 
10]. On Dec. 21st., the deputy director of the Chinese 
Center for Disease Control and Prevention (China CDC) 
claimed that, in large regions, namely Sichuan province 
which is also the largest economy in western China, more 
than 50% of residents had been infected [10]. Consist-
ently ranked as the top one research hospital in China, 
West China Hospital (WCH) stands as the largest and 
most advanced medical center in Sichuan province and 
Western China [11]. Featuring three distinct medical sub-
centers and five health management checkup subcenters, 

WCH has played a pivotal role in responding to various 
outbreaks [12]. More importantly, to better surveil the 
health status of the population and help respond to epi-
demic disease, WCH started to collect checkup informa-
tion in 2010 and further established a Big Data Platform 
to integrate all the electrical medical records [13].

Therefore, based on the longitudinal prospective 
checkup cohort of ~ 480,000 participants in Western 
China, we investigated the associations of baseline hema-
tological parameters prior to COVID-19 including the 
whole and subtypes of red blood cell white blood cell 
and other related parameters with the risk of developing 
severe COVID-19. Among the individuals with COVID-
19, we further characterized the potential trajectories of 
certain hematological parameters prior to COVID-19 
and examined the possible associations with COVID-19 
severity. We hope our findings could help decision-mak-
ers and clinicians not only classify different risk groups to 
optimize the allocation of medical resources but also help 
them be more proactive [14] instead of reactive to long 
COVID-19 or even other outbreaks in the future [15].

Methods
Design, setting, and participants
This study reports on the initial data release of the 
WHALE cohort (West China Hospital Alliance Longi-
tudinal Epidemiology Wellness Cohort). Established as 
a comprehensive longitudinal initiative, the WHALE 
cohort represents a large-scale prospective cohort of 
health checkup participants conducted in West China 
Hospital, Sichuan University, from 2010 to 2023 (Chinese 
Clinical Trial Registry [http:// www. chictr. org. cn/ index. 
aspx], identifier: ChiCTR2200066950). A total of 478,898 
participants have undergone periodic health checkups at 
the Health Management Center of West China Hospital, 
which consists of one headquarters and four subcent-
ers including Wuhou, Wenjiang, Tianfu, and Shangjin 
[16]. During the following 1  month after the relaxation 
of the “zero COVID” policy in China since Dec. 7, 2022, 
we documented 998 participants with a laboratory-con-
firmed diagnosis of COVID-19 (positive SARS-CoV-2 
nucleic acid test). All participants have completed at least 
one admission with general health checkup items includ-
ing vital signs, body measurement (height, weight, body 
mass index (BMI), blood pressure, etc.), laboratory tests 
(blood routine test, urine routine test, etc.), and so on. 

Conclusions Our findings might help decision-makers and clinicians to classify different risk groups of population 
due to outbreaks including COVID-19. They could not only optimize the allocation of medical resources, but also help 
them be more proactive instead of reactive to long COVID-19 or even other outbreaks in the future.
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Using a unique ID, one participant’s electronic health 
records can be obtained from the Big Data Platform of 
the West China Hospital, which include three independ-
ent medical subcenters (University Campus, Wenjiang 
Hospital, and Shangjin Hospital) [13]. This study was 
approved by the Ethics Committee of West China Hospi-
tal, Sichuan University, with a waiver of informed consent 
(No. 2023–245). Results are reported in accordance with 
the Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) reporting guideline [17].

Exposure assessments
After fasting overnight for 10–12 h, the peripheral blood 
samples were collected in the morning by experienced 
nurses at the Health Management Centers of West China 
Hospital. Then, the blood cell tests were all performed 
at the clinical laboratory of the West China Hospital 
following standard procedures [18]. The hematological 
parameters available investigated in the current study 
include white blood cell-related parameters (white blood 
cell count (WBC), neutrophil count (NeuC), neutrophil 
percentage (Neu%), lymphocyte count (LymC), lympho-
cyte percentage (Lym%), basophil count (BasC), basophil 
percentage (Bas%), eosinophil count (EosC), eosinophil 
percentage (Eos%), monocyte count (MonC), monocyte 
percentage (Mon%)), red blood cell-related parameters 
(red blood cell count (RBC), red cell distribution width 
(SD) (RDW-SD), red cell distribution width (CV) (RDW-
CV), hematocrit (HCT), mean corpuscular hemoglobin 
concentration (MCHC), mean corpuscular hemoglobin 
(MCH), mean corpuscular volume (MCV), hemoglobin 
(Hb), T cell markers (CD3 count/percentage, CD4/count 
percentage, CD8 count/percentage and CD4/CD8 ratio), 
and blood platelet count (PLT).

Inflammation signifies the immune system’s response 
to harmful stimuli. Thus, in addition to the aforemen-
tioned parameters, we investigated five ratios between 
cell population frequencies to enhance our understand-
ing of immune and hematological status in our study 
population [19, 20]. These ratios include monocyte-to-
lymphocyte ratio (MoLR), neutrophil-to-lymphocyte 
ratio (NLR), eosinophil-to-lymphocyte ratio (ELR), baso-
phil-to-lymphocyte ratio (BLR), and platelet-to-lympho-
cyte ratio (PLR).

Data for hematology analytes including red blood cell 
count, white blood cell count, platelet (PLT), and hemo-
globin (Hb) were determined using the XE-2100 and 
XE-5000 systems (Sysmex, Kobe, Japan). The levels of 
T lymphocytes (CD3, CD4, and CD8) were detected by 
flow cytometry (six-color flow cytometry, BD Company, 
USA); equation K value of erythrocyte sedimentation rate 
(ESR-K) and erythrocyte sedimentation rate (ESR) were 
detected using Alifax Test 1 (ALIFAX Company, Italy).

Ascertainment of outcome
Although regular nucleic acid (RT-PCR) testing for 
COVID-19 is not required anymore after the relaxation 
of the “zero COVID” policy in China since Dec. 7, 2022, 
still numerous people would come to hospitals to have 
COVID-19 nucleic acid tests and even in need intensive 
care. Thus, we documented participants from the pro-
spective cohort with a laboratory-confirmed diagnosis of 
COVID-19 (positive SARS-CoV-2 nucleic acid test) dur-
ing the following 1 month (Dec. 7, 2022 to Jan 6, 2023), in 
West China Hospital, Sichuan University, in the current 
study.

According to the in-hospital care received [21], all 
the participants were categorized into two groups: (1) 
patients with severe COVID-19 required intensive care 
(including mechanical ventilatory [22] or high-flow oxy-
gen [23]) or signed a critical illness notice; (2) patients 
with no need for above interventions were recognized as 
non-severe COVID-19 cases. Further, we classified the 
non-severe COVID-19 cases into two subgroups for sen-
sitivity analysis, namely mild COVID-19 which required 
ambulatory care and moderate COVID-19 which 
required non-intensive hospitalized treatment.

Ascertainment of covariates
As age, gender (male, female), BMI, smoking status 
(never smokers,  former smokers, often smokers, and 
occasionally  smokers), drinking habits (lifetime abstain-
ers,  former drinkers, often drinkers, and occasionally 
drinkers), hypertension (with hypertension, no hyper-
tension), and diabetes (with diabetes, no diabetes) were 
identified as considerable risk factors for COVID-19, 
we add these indicators as covariates sequentially in our 
main and sensitivity analysis [24, 25]. All the covariates 
information was collected using a standardized question-
naire during the health checkup.

Statistical analysis
In this study, the baseline characteristics were described 
according to the COVID-19 severity groups. Continuous 
variables are presented as the median and interquartile 
range (IQR, 25–75th percentile), and categorical varia-
bles are reported as numbers (n) and percentages (%). To 
estimate differences across COVID-19 severity groups, 
continuous variables were statistically inferred by the 
Mann–Whitney U test or Kruskal–Wallis H test, and cat-
egorical variables were tested by Fisher’s exact test.

To explore the association between baseline hemato-
logical parameters and the severity of COVID-19, we 
first identified the time-to-event in days from the date 
of cohort admission to the date of COVID-19 diagno-
sis. Then, we modeled the association between baseline 
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hematological parameters and the risk of severe COVID-
19 using unadjusted Cox regression proportional hazards 
analysis and 3 sequential models of adjusted Cox propor-
tional hazards analysis. Model 1 was adjusted for baseline 
age, gender, and BMI. Model 2 also included smoking 
status and drinking habits. Model 3 also included hyper-
tension and diabetes. The hazard ratio (HR) and 95% 
confidence interval (CI) were used to determine the 
strength of the effects. Considering the small value of 
BasC, MoLR, and BLR, we rescaled it (multiply by 10) 
for all the models to make the results reasonable, while in 
the descriptive analysis, we kept the original value of this 
parameter.

For sensitivity analysis, we then adopted binary and 
ordinal logistic regression using the same model (unad-
justed model, models 1, 2, and 3) to validate the asso-
ciation between hematological parameters and the 
severity of COVID-19. In the ordinal logistic analysis, 
998 COVID-19 patients were divided into three groups 
(mild, moderate, and severe) according to the severity of 
the COVID-19. The odds ratio (OR) and 95% confidence 
interval were used to report the results.

To identify potential trajectory patterns of hematologi-
cal parameters before COVID-19, we extracted all fol-
low-up data of the studied patients from the cohort while 
excluding those with less than twice blood tests. Parame-
ters identified significantly associated with COVID-19 in 
the foregoing analysis, as well as those reported as related 
factors of COVID-19, were included [26–28] (detailed 
methods for construction of trajectory can be found in 
Additional file 1: Supplemental Method [29–35]).

Finally, we investigated the relationship of the severity 
of COVID-19 with different trajectory pattern groups of 
hematological parameters by performing the Cox pro-
portional hazards analysis, using the previous 4 models. 
Binary logistic regression analysis was also conducted to 
validate the results from Cox analysis. For the significant 
parameters obtained in the Cox and logistic analysis for 
trajectories, Kaplan–Meier analysis was then employed 
to further examine the association between severe 
COVID-19 and trajectories of specific hematological 
parameters. The trajectory analysis was performed using 
the R package “lcmm” (version 2.0.0) and all analyses 
were conducted using R software (version 4.0.3, R pack-
age “survival” “TableOne”) [28]. A P value of < 0.05 was 
considered significant for all analyses.

Results
Baseline characteristics
Among the 478,898 participants admitted to the Health 
Management Center of West China Hospital from 2010 
to 2023, we documented 998 participants with a positive 
SARS-CoV-2 test over 13 years of follow-up (Fig. 1 shows 

the flow diagram of the study). Among those partici-
pants, 4.2% (n = 42) were severe cases and 95.8% (n = 956) 
were non-severe cases.

Of the 998 patients, 43.9% (n = 438) were women 
and 93.0% (n = 928) were less than 65 years old and the 
median age was 37  years old (IQR, 28–48  years). 61.6% 
(n = 615) of patients reported never drinking and 77.3% 
(n = 772) of participants reported never smoking. 11.2% 
(n = 112) of patients had hypertension, and 4.5% (n = 45) 
had diabetes. The baseline results of all 34 hematological 
parameter-related examinations can be found in Table 1.

Associations of severe COVID‑19 and different 
hematological parameters
In the time-to-event analysis, we applied unadjusted and 
three sequential adjusted models to explore the associa-
tion between severe COVID-19 and different hemato-
logical parameters in the baseline model. Although no 
significant difference was identified in platelet count 
using all 4 models, outcomes of white blood cell-related 
parameters and red cell-related parameters varied.

For white blood cell-related parameters, after adjust-
ing age, sex, BMI, smoking status, drinking status, dia-
betes, and hypertension (model 3, fully adjusted model), 
severe COVID-19 was significantly associated with a 
lower level of LymC (adjusted HR [aHR] = 0.571, 95% 
CI = 0.341–0.955, P = 0.033), and a higher level of Bas% 
(aHR = 6.164, 95% CI = 2.066–18.393, P = 0.001) and 
Mon% (aHR = 1.283, 95% CI = 1.046–1.573, P = 0.017). 
Similar signals were captured in the other 3 models. For 
lymphocyte-related parameters specifically, only higher 
levels of CD4/CD8 ratio (aHR = 2.473, 95% CI = 1.009–
6.059, P = 0.048) were found associated with severe 
COVID-19 in all of the 4 models with significance. Fur-
thermore, a higher level of monocyte count (HR = 7.693, 
95% CI = 1.020–58.009, P = 0.048) and lower level of CD8 
count (HR = 0.990, 95% CI = 0.981–0.999, P = 0.036) were 
also discovered to have a significant association with 
severe COVID-19 in unadjusted model (Fig.  2, Addi-
tional file 2: Table S1).

For red blood cell-related parameters, after adjust-
ing age, sex, BMI, smoking status, drinking status, dia-
betes, and hypertension status (model 3, fully adjusted 
model), severe COVID-19 was significantly associ-
ated with a higher level of RDW-SD (aHR = 1.171, 95% 
CI = 1.042–1.315, P = 0.008) and lower level of RBC 
(aHR = 0.343, 95% CI = 0.136–0.865, P = 0.023) and Hb 
(aHR = 0.966, 95% CI = 0.935–0.998, P = 0.039). Similar 
signals were also identified in the other three models. 
Further, in the unadjusted model, RDW-CV (HR = 1.371, 
95% CI = 1.073–1.752, P = 0.012), MCV (HR = 1.150, 95% 
CI = 1.079–1.227, P = 0.201 ×  10−4), ESR-K (HR = 1.029, 
95% CI = 1.005–1.054, P = 0.019), and ESR (HR = 1.137, 
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95% CI = 1.037–1.247, P = 0.006) were also discovered 
to have a significant association with severe COVID-19 
(Additional file 2: Table S1).

For ratios between cell population frequencies, after 
adjusting age, sex, BMI, smoking status, drinking sta-
tus, diabetes, and hypertension (model 3, fully adjusted 
model), severe COVID-19 was significantly associ-
ated with a higher level of MoLR (aHR = 1.645, 95% 
CI = 1.258–2.152, P < 0.001), NLR (aHR = 1.032, 95% 
CI = 1.001–1.065, P = 0.042), and BLR (aHR = 1.601, 95% 
CI = 1.223–2.096, P < 0.001). Similar signals were also 
identified in the other three models (Additional file  2: 
Table S1).

Sensitivity analysis
We then performed binary and ordinal logistic regres-
sion analysis as sensitivity analysis using the same 
models. Notably, after classifying the 956 non-severe 
COVID-19 cases into mild (n = 921, 92.3%) and moder-
ate (n = 35, 3.5%) subgroups, 54.7% (n = 504) of the mild 
subgroups were male, 99.3% (n = 915) were less than 
80  years old, 60% (n = 21) of the moderate subgroups 
were male, and 100% (n = 35) were less than 65  years 
old (Additional file 2: Table S2).

For white blood cell-related parameters, lower count 
of CD3, CD4, and CD8 and higher count of CD4/
CD8 ratio showed significant association with severe 

Fig. 1 Flow diagram of the study
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Table 1 Baseline characteristics of patients with COVID-19

Illness severity

Non‑severe (n = 956) Severe (n = 42) All (n = 998) P value

Variables
Age (years)*  < 0.001

  < 80 950 (99.4%) 36 (85.7%) 986

  ≥ 80 6 (0.6%) 6 (14.3%) 12

Sex  < 0.001

 Male 525 (54.9%) 35 (83.3%) 560

 Female 431 (45.1%) 7 (16.7%) 438

Smoking status 0.135

 Never 744 (77.8%) 28 (66.7%) 772

 Former 17 (1.8%) 1 (2.4%) 18

 Often 147 (15.4%) 8 (19%) 155

 Occasionally 48 (5%) 5 (11.9%) 53

Drinking status 0.307

 Never 589 (61.6%) 26 (61.9%) 615

 Former 3 (0.3%) 1 (2.4%) 4

 Often 66 (6.9%) 2 (4.8%) 68

 Occasionally 298 (31.2%) 13 (31%) 311

Hypertension  < 0.001

 No hypertension 864 (90.4%) 22 (52.4%) 886

 With hypertension 92 (9.6%) 20 (47.6%) 112

Diabetes  < 0.001

 No diabetes 919 (96.1%) 34 (81%) 953

 With diabetes 37 (3.9%) 8 (19%) 45

Continuous variables (median (IQR))
 Red blood cell count (1012/L) 4.89 (4.55–5.23) 4.73 (4.47–5.12) 4.87 (4.55–5.23) 0.060

 Red cell distribution width (SD) (fL) 43.55 (41.40–45.60) 46.95 (45.10–48.65) 43.60 (41.50–45.80)  < 0.001

 Red cell distribution width (CV) (%) 13.10 (12.60–13.60) 13.75 (13.30–14.30) 13.20 (12.60–13.70)  < 0.001

 Hematokrit (L/L) 0.45 (0.42–0.48) 0.42 (0.41–0.47) 0.44 (0.41–0.48) 0.838

 Mean corpuscular hemoglobin concentration (g/L) 331.0 (324.0–338.0) 329.0 (325.0–334.75) 331.0 (324.0–338.0) 0.353

 Mean corpuscular hemoglobin (pg) 30.20 (29.20–31.20) 30.75 (30.0–31.87) 30.30 (29.28–31.20) 0.005

 Mean corpuscular volume (fL) 91.10 (88.30–93.80) 93.30 (91.43–96.45) 91.20 (88.40–93.90)  < 0.001

 Hemoglobin (g/L) 147.0 (136.0–159.0) 147.0 (137.0–158.0) 147.0 (136.0–159.0) 0.710

 Blood sedimentation equation K value 11.78 (9.48–25.31) 33.67 (26.21–44.64) 12.38 (9.84–27.16) 0.001

 Erythrocyte sedimentation rate (mm/h) 3.0 (2.0–6.0) 9.50 (6.0–15.0) 3.0 (2.0–7.0) 0.001

 White blood cell count (109/L) 5.97 (4.98–7.06) 5.86 (5.15–7.05) 5.96 (4.99–7.06) 0.926

 Neutrophil count (109/L) 3.46 (2.81–4.27) 3.38 (2.94–4.12) 3.45 (2.81–4.26) 0.848

 Neutrophil percent (%) 58.50 (53.32–63.48) 57.95 (53.40–65.10) 58.50 (53.38–63.60) 0.478

 Lymphocyte count (109/L) 1.94 (1.58–2.30) 2.0 (1.33–2.40) 1.94 (1.58–2.30) 0.373

 Lymphocyte percentage (%) 32.90 (28.30–37.70) 32.60 (24.95–37.10) 32.90 (28.17–37.70) 0.281

 Basophil count (109/L) 0.02 (0.02–0.04) 0.02 (0.02–0.04) 0.02 (0.02–0.04) 0.904

 Basophil percentage (%) 0.40 (0.20–0.60) 0.40 (0.30–0.60) 0.40 (0.20–0.60) 0.813

 Eosinophil count (109/L) 0.11 (0.07–0.18) 0.12 (0.09–0.17) 0.11 (0.07–0.18) 0.288

 Eosinophil percentage (%) 1.80 (1.20–2.90) 1.95 (1.40–2.85) 1.80 (1.20–2.90) 0.417

 Monocyte count (109/L) 0.33 (0.26–0.41) 0.36 (0.30–0.41) 0.33 (0.26–0.41) 0.240

 Monocyte percentage (%) 5.55 (4.62–6.70) 5.70 (5.12–7.05) 5.60 (4.70–6.70) 0.218

 CD3 count (cell/ul) 1151.50 (927.25–1433.25) 995.0 (835.0–1067.0) 1135.0 (907.0–1419.0) 0.089

 CD3 percentage (%) 67.40 (61.80–73.70) 69.40 (59.70–72.65) 67.80 (61.77–73.75) 0.962

 CD4 count (cell/ul) 627.0 (503.0–782.25) 719.0 (421.0–734.0) 628.0 (500.0–781.0) 0.599
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Table 1 (continued)

Illness severity

Non‑severe (n = 956) Severe (n = 42) All (n = 998) P value

 CD4 percentage (%) 37.50 (32.0–43.10) 39.50 (33.80–49.0) 37.70 (32.22–43.18) 0.410

 CD8 count (cell/ul) 407.0 (304.75–574.25) 296.0 (197.0–305.0) 395.0 (295.0–571.0) 0.019

 CD8 percentage (%) 24.0 (17.80–29.70) 19.10 (16.30–25.55) 23.55 (17.80–29.72) 0.227

 CD4/CD8 ratio 1.58 (1.16–2.20) 2.48 (1.11–3.34) 1.58 (1.16–2.25) 0.244

 Blood platelet count (109/L) 200.0 (165.0–246.0) 155.50 (141.75–207.50) 199.0 (163.0–245.0)  < 0.001

 Monocyte‑to‑lymphocyte ratio 0.17 (0.14–0.22) 0.18 (0.14–0.27) 0.17 (0.14–0.22) 0.109

 Neutrophil‑to‑lymphocyte ratio 1.77 (1.42–2.25) 1.74 (1.47–2.67) 1.77 (1.43–2.26) 0.276

 Eosinophil‑to‑lymphocyte ratio 0.06 (0.03–0.09) 0.07 (0.04–0.10) 0.06 (0.03–0.09) 0.076

 Basophil‑to‑lymphocytes ratio 0.01 (0.01–0.02) 0.02 (0.01–0.02) 0.01 (0.01–0.02) 0.383

 Platelet‑to‑lymphocyte ratio 104.74 (82.33–131.76) 89.54 (68.17–137.48) 104.50 (80.84–131.96) 0.172

Data are n (%) or median (IQR). P value denotes the comparison among mild, moderate, and severe illness groups. The outcomes were designated as non-severe and 
severe respectively

Red cell distribution width (SD), red blood cell distribution width standard deviation; Red cell distribution width (CV), red blood cell distribution width coefficient of 
variation
* Since only 66% of those older than 80 had been fully vaccinated by late November 2022, the age of 80 was set as the cutting point to minimize the confounding 
effect of vaccination [10]

Fig. 2 a P < 0.05 in Cox regression analysis. b P < 0.05 in bivariable logistic regression analysis; c P < 0.05 in multivariable ordinal logistic regression 
analysis. Model 1: adjusted for baseline age, gender, and BMI. Model 2: further adjusted for smoking status and drinking habits. Model 3: further 
adjusted for hypertension and diabetes
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COVID-19 in different models using both kinds of 
regression analysis (all adjusted OR  [aOR] < 1, all 
P < 0.05). For red blood cell-related parameters, both 
binary and ordinal logistic analyses additionally found 
a higher level of red cell distribution width (CV) had 
a significant association with severe COVID-19 (all 
aOR > 1, all P < 0.05), apart from red cell distribution 
width (SD) (all aOR > 1, all P < 0.05). Further, ordinal 
logistic regression analysis found that the decrease 
of MCHC was associated with a higher risk of severe 
COVID-19 (all aOR < 1, all P < 0.05). Moreover, severe 
COVID-19 was found significantly associated with both 
higher ESR and higher ESR-K whether or not adjust-
ing for age, sex, and BMI (all OR > 1, all P < 0.05) (Addi-
tional file 2: Table S3-S4).

For ratios between cell population frequencies, higher 
MoLR and NLR were found significant association with 
severe COVID-19 in different adjusting models using 
both binary and ordinal logistic regression analysis 
(all aOR > 1, all P < 0.05). Besides, lower platelet count 
showed a slight significance associated with severe 
COVID-19 using either binary or ordinal logistic regres-
sion analysis in an unadjusted model (binary logistic 
regression OR = 0.994, 95% CI = 0.990–0.998, P = 0.005; 
ordinal logistic regression OR = 0.990, 95% CI = 0.984–
0.996, P = 0.001) (Additional file 2: Table S3-S4).

Relationship between hematological parameters trajectory 
and severity of COVID‑19
After excluding participants without at least two blood 
cell tests, 727 COVID-19 patients were left in the trajec-
tory analysis, 35 of which were identified as severe cases. 
A total of 14 parameters were excluded, 9 of which were 
with fewer than 10 severe COVID-19 patients and 5 of 
which did not satisfy the criterion to generate optimal 
trajectories. The results of the fitting process and tra-
jectories of all hematological parameters can be found 
in Additional file  2: Table  S5-S29 and Additional file  3: 
Fig. S1-19. As shown in Table  2, in the unadjusted Cox 
proportional hazards models, the high-increasing RDW-
SD trajectory was associated with a higher risk of severe 
COVID-19 compared with the low-increasing group 
(HR = 3.654, 95% CI = 1.406–9.497, P = 0.008). In terms 
of the NeuC, the N-shape trajectory was found to have a 
lower risk of severe COVID-19 than the inverted N-shape 
trajectory (HR = 0.261, 95% CI = 0.080–0.854, P = 0.026). 
The U-shape trajectory of LymC was identified to be pos-
itively associated with severe COVID-19 cases compared 
with the stable trajectory, and the adjusted models all 
yielded similar results (all P < 0.05).

The binary logistic regression models agreed well 
with the results of Cox regression (Additional file  2: 
Table  S29). Furthermore, the logistic regression models 

witnessed the decreasing trajectory of WBC had a higher 
risk of severe COVID-19, compared with the U-shape 
trajectory (OR = 2.267, 95% CI = 1.111–4.629, P = 0.001). 
No significant results of the 5 ratio trajectories were 
found in all the models. Stratifying the patients using tra-
jectory groups of RDW-SD, WBC, NeuC, and LymC, the 
Kaplan–Meier analysis showed a significant association 
with the incidence of severe COVID-19 cases (Fig. 3).

Discussion
Based on the 13-year longitudinal prospective health 
check-up cohort (WHALE), we demonstrated significant 
correlations between the risk of severe COVID-19 and 
different kinds of hematological parameters at the base-
line level, accounting for pre-existing conditions. Specifi-
cally, subtypes of white blood cells, including basophil, 
monocyte, lymphocyte, and CD4/CD8 ratio, and ratios 
between cell population frequencies, including MoLR, 
NLR, and BLR, were found related to the risk of severe 
COVID-19. We also observed that abnormality of red 
cell distribution width (RDW), mean corpuscular hemo-
globin concentration (MCHC), and hemoglobin might 
also be involved in the development of severe COVID-19. 
The trajectory patterns of RDW-SD and white blood cell 
count, including lymphocyte and neutrophil, prior to the 
infection could help further distinguish the higher-risk 
population of COVID-19 proactively.

The current WHALE cohort was conducted at West 
China Hospital (WCH) of Sichuan University. Although 
it is located in Sichuan province, it was still considered 
to be population-based and can be considered nationally 
representative, mainly for three reasons. First, WCH is 
not only the largest medical center in western China but 
also consistently ranked in second place among all hospi-
tals in China; the healthcare system provides tertiary care 
for the population of Sichuan (of over 80 million) and 
other provinces [1, 36, 37]. Second, Sichuan province is 
not only the largest economy in Western China but also 
the 18th-largest economy ahead of the GDP of Turkey, 
as well as the 19th most populous as of 2021. Third, in 
history, there have been several times of massive reset-
tlement and immigration of people from the neighbor-
ing regions in China [38], so the participants in Sichuan 
province are quite diverse. Therefore, residents recruited 
in the WHALE cohort in this study are large enough 
and representative enough to identify specific popula-
tion health problems geographically, economically, and 
historically.

The white blood cells, also named leukocytes, are an 
important and sophisticated group of cells and are pri-
marily involved in inflammatory disease pathogenesis 
[39]. Some of them are involved in the pathogenesis of 
several inflammatory immune-mediated disorders, in 
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Table 2 Hazard ratios (HRs) and 95% confidence intervals (CIs) for hematological parameters trajectories associated with incident 
severity of COVID-19

Hematological 
parameters

Trajectories Unadjusted model Model 1 Model 2 Model 3

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Red blood cell 
count

Decreasing (ref.)

Increasing 0.651 [0.318, 
1.331]

0.239 1.075 [0.507, 
2.278]

0.85 1.039 [0.479, 
2.250]

0.923 1.055 [0.488, 
2.279]

0.891

Red cell distribu‑
tion width (SD)

Low-increasing 
(ref.)

High-increasing 3.654 [1.406, 
9.497]

0.008 1.063 [0.357, 
3.169]

0.913 1.043 [0.349, 
3.118]

0.941 0.962 [0.308, 
3.009]

0.947

Red cell distribu‑
tion width (CV)

Stable (ref.)

Decreasing 0.000 [0.000, Inf ] 0.997 0.000 [0.000, Inf ] 0.997 0.000 [0.000, Inf ] 0.997 0.000 [0.000, Inf ] 0.997

Mean corpuscu‑
lar hemoglobin

N-shape (ref.)

Increasing 0.601 [0.144, 
2.514]

0.486 0.436 [0.102, 
1.867]

0.263 0.421 [0.098, 
1.810]

0.245 0.406 [0.091, 
1.811]

0.237

Mean corpuscu‑
lar volume

N-shape (ref.)

Increasing 0.732 [0.175, 
3.059]

0.669 0.651 [0.154, 
2.760]

0.561 0.638 [0.150, 
2.711]

0.543 0.685 [0.157, 
2.983]

0.614

White blood cell 
count

U-shape (ref.)

Decreasing 1.738 [0.861, 
3.508]

0.123 0.795 [0.361, 
1.752]

0.569 0.744 [0.327, 
1.693]

0.482 0.728 [0.315, 
1.679]

0.456

Neutrophil count Inverted N shape 
(ref.)

N-shape 0.261 [0.080, 
0.854]

0.026 0.481 [0.144, 
1.611]

0.236 0.486 [0.144, 
1.644]

0.246 0.499 [0.146, 
1.699]

0.266

Lymphocytes 
count

stable (ref.)

Low-decreasing 0.787 [0.369, 
1.677]

0.534 0.969 [0.431, 
2.182]

0.94 0.981 [0.433, 
2.222]

0.963 0.922 [0.392, 
2.169]

0.853

U-shape 4.287 [1.275, 
14.413]

0.019 3.584 [1.039, 
12.363]

0.043 3.778 [1.054, 
13.544]

0.041 3.823 [1.027, 
14.231]

0.045

Lymphocyte 
percentage

Decreasing (ref.)

U-shape 2.406 [0.733, 
7.891]

0.148 2.662 [0.794, 
8.919]

0.113 2.654 [0.784, 
8.984]

0.117 2.757 [0.790, 
9.621]

0.112

Basophil count Stable (ref.)

Increasing 0.364 [0.087, 
1.519]

0.166 0.628 [0.145, 
2.722]

0.535 0.536 [0.117, 
2.457]

0.422 0.558 [0.122, 
2.557]

0.453

Basophil per‑
centage

Stable (ref.)

Inverted U-shape 0.517 [0.071, 
3.783]

0.516 1.058 [0.141, 
7.935]

0.956 0.957 [0.123, 
7.449]

0.967 1.074 [0.134, 
8.584]

0.946

Eosinophil per‑
centage

N-shape (ref.)

Stable 0.711 [0.170, 
2.968]

0.64 0.391 [0.091, 
1.688]

0.209 0.380 [0.087, 
1.651]

0.197 0.338 [0.075, 
1.517]

0.157

Monocyte count J-shape (ref.)

Inverted U-shape 0.464 [0.109, 
1.965]

0.297 0.931 [0.201, 
4.317]

0.928 0.866 [0.185, 
4.046]

0.855 0.736 [0.148, 
3.659]

0.708

Monocyte per‑
centage

J-shape (ref.)

Inverted U-shape 0.683 [0.209, 
2.237]

0.529 0.959 [0.277, 
3.325]

0.948 0.983 [0.272, 
3.559]

0.979 1.069 [0.292, 
3.913]

0.92

Blood platelet 
count

U-shape (ref.)

Inverted U-shape 0.492 [0.172, 
1.404]

0.185 1.612 [0.521, 
4.986]

0.407 1.608 [0.518, 
4.997]

0.411 1.678 [0.532, 
5.300]

0.377

Monocyte‑to‑
lymphocyte ratio

U-shape (ref.)

Increasing 0.694 [0.208, 
2.314]

0.552 0.407 [0.115, 
1.439]

0.163 0.376 [0.103, 
1.374]

0.139 0.388 [0.108, 
1.398]

0.148
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particular, systemic chronic inflammation [40]. Notably, 
leukocytes, as inflammation parameters, have been suc-
cessfully used to prognosticate patients with inflamma-
tory diseases, especially various types of cancers [41–43]. 
The role of inflammation parameters in severe infectious 
diseases has also been identified and their ability to pre-
dict risk was demonstrated [44]. Therefore, we focused 
on the association between severe COVID-19 and plen-
tiful leukocyte-related inflammatory parameters prior to 
COVID-19. Even though very few studies focused on the 
long-term changes prior to COVID-19, many post-infec-
tion studies tried to explore the key role of leukocytes 
after diagnosis of COVID-19.

In this study, we found that patients with increased 
basophil percentage prior to infection had a higher risk 
for severe COVID-19 after adjustment for a series of con-
founders. For instance, a similar result was also found in 
a retrospective study with 548 patients which presented 
that a progressive increase in basophil count was a risk 
factor for fatal outcomes of COVID-19 by comparing 
longitudinal variations between on-admission and end 
hospitalization [45]. Further, a large number of literature 
data suggested that basophils played an active role in a 
coordinated adaptive immune response to SARS-CoV-2. 
Contrary to our results, a decreased basophil count 
was found in patients especially after the diagnosis of 
acute and severe COVID-19 [46] and associated with a 
worse prognosis [47]. The decrease is thought to be due 
to elevated IL-6 levels resulting from hyperinflamma-
tory cytokine responses which suppress anti-CoV-2 IgG 
responses in severe cases, leading to an acceleration of 
basophil depletion [46]. Therefore, the variation of asso-
ciation of basophil cell count underscores the significance 

of careful study design and accurate measurements 
for tracking longitudinal changes. Further research is 
imperative to thoroughly investigate the pathophysiol-
ogy of basophils in the context of COVID-19 or other 
pandemics.

Given the potential danger posed by dysregulated 
cytokine storms which monocytes may contribute to, 
understanding the role of monocytes in risk prediction is 
useful for the prevention of severe COVID-19 [48]. Our 
Cox regression analysis revealed that the baseline mono-
cyte percentage in the severe group was significantly 
higher than the non-severe group, which was consistent 
with many previous post-infection studies [49, 50]. For 
example, Biamonte et al. carried out their single-institu-
tional research with 50 patients and found that mono-
cyte count was one of the main markers discriminating 
against high- and low-risk groups [51]. By contrast, our 
study not only included a larger sample size on the basis 
of a prospective cohort but also unraveled the long-term 
change of monocytes before COVID-19.

Moreover, lymphocyte count/percentage prior to 
SARS-CoV-2 infection was with a negative correlation 
between and the severity of COVID-19 in both our Cox 
and logistic regression, which is supported by many pre-
vious biological and pathological studies. For example, 
lymphopenia is a widely discussed hematological abnor-
mality linked with the severity of COVID-19 infection 
and prognosis [52], as COVID-19 encompassed both the 
innate and adaptive immune responses, which might be 
caused by a deficient immunological response to viral 
infection [53]. Since it is similar to other viral inflam-
matory responses, which hinder lymphopoiesis and 
elevate lymphocyte apoptosis [54]. Our outcome might 

Table 2 (continued)

Hematological 
parameters

Trajectories Unadjusted model Model 1 Model 2 Model 3

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Neutrophil‑to‑
lymphocyte ratio

N-shape (ref.)

Stable 0.336 [0.102, 
1.102]

0.072 0.533 [0.125, 
2.276]

0.396 0.541 [0.126, 
2.326]

0.409 0.530 [0.120, 
2.350]

0.404

Eosinophil‑to‑
lymphocyte ratio

Stable (ref.)

Increasing 1.808 [0.523, 
6.258]

0.350 1.536 [0.416, 
5.673]

0.520 1.646 [0.440, 
6.162]

0.459 1.574 [0.417, 
5.936]

0.503

Platelet‑to‑lym‑
phocyte ratio

N-shape (ref.)

Stable 0.878 [0.305, 
2.530]

0.809 0.429 [0.145, 
1.271]

0.127 0.420 [0.139, 
1.271]

0.125 0.436 [0.140, 
1.356]

0.151

U-shape 1.335 [0.376, 
4.737]

0.654 0.570 [0.158, 
2.059]

0.391 0.541 [0.147, 
1.995]

0.356 0.530 [0.142, 
1.971]

0.343

Ref. The reference group in the model; Model 1: adjusted for baseline age, gender, and BMI; Model 2: further adjusted for smoking status and drinking habits; Model 3: 
further adjusted for hypertension and diabetes

Red cell distribution width (SD), red blood cell distribution width standard deviation; Red cell distribution width (CV), red blood cell distribution width coefficient of 
variation
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Fig. 3 Trajectories prior to COVID-19 and Kaplan–Meier curves of 4 hematological parameters. A1 Trajectories of red cell distribution width (SD). 
B1 Trajectories of white blood cell count. C1 Trajectories of neutrophil count. D1 Trajectories of lymphocyte count. A2 Kaplan–Meier analysis of red 
cell distribution width (SD). B2 Kaplan–Meier analysis of white blood cell count. C2 Kaplan–Meier analysis of neutrophil count. D2 Kaplan–Meier 
analysis of lymphocyte count
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provide decision references when facing other infection 
pandemics.

In addition, identifying the trajectories of lymphocyte 
count could help distinguish different risk groups for 
severe COVID-19. Although the mechanism of why the 
U-shape trajectory group was prone to develop severe 
COVID-19 is unclear, it could help clinicians and deci-
sion-makers to recognize individuals with a high risk of 
severe COVID-19. Our trajectory analysis used a power-
ful statistical method (GMM) for uncovering unobserved 
subpopulations, which might provide valuable insights 
into heterogeneous developmental trajectories. Previous 
studies indicated that there might be a potential genetic 
correlation between the trajectories and the genetic fac-
tors [55]. For instance, the trajectories of white blood 
cells or lymphocyte count might be the results of inborn 
errors of Type I IFN immunity or autoantibodies against 
type I IFNs in patients associated with COVID-19 sever-
ity [56].

To be specific, it was presented that lower CD8 and 
higher CD4-to-CD8 ratios were significantly associated 
with severe COVID-19. A prospective and observa-
tional cohort study that analyzed blood samples from 19 
patients with COVID-19 ARDS proved that the CD4-to-
CD8 ratio was a widely recognized prognostic parameter 
for disease severity [57]. Therefore, we would highlight 
the CD4-to-CD8 ratio as an essential parameter to early 
identify the high-risk population for severe COVID-19.

Interestingly, this study did not discover any significant 
difference in neutrophil count between severe and non-
severe COVID-19 in either Cox or logistic regression, but 
two trajectories of the neutrophil count, N-shape, and 
inverted N-shape were finally identified. Even though the 
two trajectories were not linear-like, the different time-
to-event outcomes could help better classify the risk of 
COVID-19 patients [58]. Based on our results, N-shaped 
trajectory of neutrophils might potentially increase 
the incidence of severe COVID-19, which is similar to 
a previous research by Takayuki and colleagues. They 
performed a systematic review to find neutrophilia was 
correlated with severe COVID-19 [51]. The alteration 
in neutrophil count may be related to cytokine storm 
induced by virus invasion [52].

Even though the underlying pathology through which 
this intricate change trajectory impacts COVID-19 
requires further investigation, it offers a fresh perspec-
tive on the long-term monitoring of patients based on 
checkup parameters. Our results and analytical examples 
lay the groundwork for leveraging this association in the 
prediction of the onset and progression of serious pan-
demics like COVID-19.

Furthermore, red blood cells (RBC), also named 
erythrocytes, are the functional component in human 

circulation, and their main physiological role is to assist 
gas exchange and transport nutrients to various parts 
of the body [59]. In our analysis, higher RDW-CV and 
RDW-SD were found a significant association with 
severe COVID-19. Although the exact pathophysiology 
behind the association has yet to be elucidated, numer-
ous reports have indicated the hyperinflammatory state 
might suppress and destruct the hematopoietic function 
of bone marrow, resulting in abnormality of RBC size and 
subsequently elevated RDW levels [60, 61]. Moreover, 
MCHC and hemoglobin concentration were found nega-
tively correlated with the severity of COVID-19, which 
was also agreed by previous studies. For example, SARS-
CoV-2 might aggravate the disease by directly infecting 
red blood cell precursor cells and affecting hemoglobin 
biosynthesis in red blood cells [62]. Some COVID-19 
patients might present insufficient blood oxygenation 
even though their lungs did not appear severely damaged, 
which indicated a direct involvement of erythrocytes in 
COVID-19 infections [63].

Ratios between cell population frequencies have a 
high diagnostic and prognostic value for many infec-
tious and non-communicable chronic diseases, making 
them extremely important clinically [64]. Our results 
indicated significant associations of risk of COVID-19 
severity with baseline levels of NLR and MoLR, which 
was agreed by many previous studies [45], even though 
most of them focused only on the post-infection sta-
tus. For instance, a retrospective analysis, based on 199 
COVID-19 patients, revealed elevated MoLR and NLR 
might be related to poor survival [65]. Rezaeian et al. also 
suggested that these two parameters could be applied as 
a valuable strategy for theragnosis goals and clinical man-
agement of COVID-19 [66]. The potential mechanism 
may be that COVID-19 can activate innate and adaptive 
immune responses, and elevated MoLR and NLR indi-
cate an inflammatory status and heightened immune 
system activity [19]. While the exact pathophysiological 
mechanisms underlying this association remain elusive, it 
has been observed that basophils, which are implicated 
in allergic reactions, inflammation, and autoimmune 
disorders, might play a role in the progression of severe 
COVID-19 [67].

Except for the above significant associations, our main 
analysis did not find a significant difference in blood 
platelet count between severe and non-severe COVID-
19. However, some researchers associated thrombocyto-
penia with critical COVID-19 and higher mortality [68]. 
Cytokine storm caused by severe COVID-19 is a high-
risk factor for disseminated intravascular coagulopathy, 
which contributed to thrombocytopenia [69]. In addi-
tion, Tan et  al. performed a retrospective analysis and 
revealed an inverse relationship between eosinophils and 



Page 13 of 16Lin et al. BMC Medicine          (2024) 22:105  

the severity of COVID-19 [70]. These conclusions were 
both not found in our analysis and needed more study to 
prove.

These discoveries indicated that impairment of base-
line function of the immune or metabolism of energy 
and nutrients might result in severe COVID-19. The 
main strengths of the study include that it was based on 
the current largest health checkup prospective cohort, 
in which different types of blood cell tests were assessed 
prior to the pandemic of COVID-19. In addition, it is the 
first trajectory analysis over 13 years of baseline hemato-
logical parameters in participants prior to COVID-19, to 
the best of our knowledge. Notably, we would emphasize 
the vital role of lymphocytes, regardless of their count, 
percentage, and trajectory, which might act as an essen-
tial parameter to early identify the high-risk population 
for severe COVID-19. Our study provides valuable popu-
lation-based evidence for the associations between severe 
COVID-19 and hematological parameters at baseline 
levels before COVID-19, which might help proactively 
identify high-risk groups of infection, including COVID-
19, using similar progressions of hemocyte changes over 
ages.

In particular, vaccination status might play an essential 
role in the assessment of COVID-19 severity [71]. How-
ever, we would suggest it might only have minor influ-
ence on us, mainly for three reasons. First and foremost, 
our logistic and Cox regression analyses were applied 
to identify the associations between severe COVID-19 
and baseline hematological parameters, which are all 
reported before COVID-19 happened in 2020; thus, no 
one would be affected by vaccinations. In addition, even 
though the COVID-19 vaccine might enhance immune 
response [72], change red blood cell morphology [73], 
or even cause thrombocytopenia [74], the alterations of 
the parameters would all be in the follow-up. Therefore, 
we would suggest that our trajectories could still track 
these alterations in the follow-up, as the outcomes were 
all identified. Moreover, since only 66% of those older 
than 80 had been fully vaccinated by late November [10], 
according to data released by the State Council’s joint 
prevention and control mechanism, we tried to perform 
a univariable sensitivity analysis excluding patients older 
than 80 years old (Additional file 2: Table S30). Notably, 
the results showed no statistically significant disparities 
between the outcomes before and after this sensitivity 
analysis for the main parameters we reported. Conse-
quently, the influence of vaccination status on our con-
clusions appears to be minimal. Given the established 
connections between vaccination and both COVID-19 
severity and blood cells [75], it is imperative to interpret 
and generalize our findings cautiously considering these 
factors.

However, the present study has several limitations. 
First, our analysis only included 998 samples, whereas the 
influence of the bias from the small sample size would be 
narrowed by using prospective data and controlling pos-
sible confounding variables. Second, the study was not 
a traditional multicenter study, yet not only WCH owns 
three independent medical subcenters and four health 
management checkup centers but also there were a num-
ber of participants who were referred from different 
geographic places for the health alliance of WCH. Thus, 
we assumed our outcomes were reliable and representa-
tive of the Chinese population. Third, we were unable to 
investigate whether the severe COVID-19 patients had 
a predisposition to this severity, because of lacking the 
genetic testing data for all the COVID-19 patients. How-
ever, as our previous publication suggested the underly-
ing genetic correlation between blood cells and severe 
COVID-19 in European ancestry using UK Biobank 
[76], we believed it is truly a future scientific direction 
of our West China WHALE cohort, aiming not only for 
COVID-19 but also for other severe acute respiratory 
pandemic.

Conclusion
In conclusion, based on the data from the largest pro-
spective WHALE cohort in western China, we found that 
several abnormalities of blood cells indicated a substan-
tially increased risk of severe COVID-19 among individu-
als subsequently infected with SARS-CoV-2. Specifically, 
increased basophil percentage, monocyte percentage, 
CD4-to-CD8 ratio, and RDW and decreased lymphocyte 
count, MCHC, and hemoglobin concentration predicted 
more severe disease. The trajectory patterns determined 
in our study might help optimize the allocation of medi-
cal resources by defining risk stratification earlier and 
more accurately. The use of a health checkup cohort in 
our analysis calls for further investigations focusing on 
the role of proactive health in the era of long COVID-19.
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