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Abstract 

Background Alterations in sleep have been described in multiple health conditions and as a function of several 
medication effects. However, evidence generally stems from small univariate studies. Here, we apply a large-sample, 
data-driven approach to investigate patterns between in sleep macrostructure, quantitative sleep EEG, and health.

Methods We use data from the MrOS Sleep Study, containing polysomnography and health data from a large sam-
ple (N = 3086) of elderly American men to establish associations between sleep macrostructure, the spectral composi-
tion of the electroencephalogram, 38 medical disorders, 2 health behaviors, and the use of 48 medications.

Results Of sleep macrostructure variables, increased REM latency and reduced REM duration were the most com-
mon findings across health indicators, along with increased sleep latency and reduced sleep efficiency. We found 
that the majority of health indicators were not associated with objective EEG power spectral density (PSD) altera-
tions. Associations with the rest were highly stereotypical, with two principal components accounting for 85–95% 
of the PSD-health association. PC1 consists of a decrease of slow and an increase of fast PSD components, mainly 
in NREM. This pattern was most strongly associated with depression/SSRI medication use and age-related disorders. 
PC2 consists of changes in mid-frequency activity. Increased mid-frequency activity was associated with benzo-
diazepine use, while decreases were associated with cardiovascular problems and associated medications, in line 
with a recently proposed hypothesis of immune-mediated circadian demodulation in these disorders. Specific 
increases in sleep spindle frequency activity were associated with taking benzodiazepines and zolpidem. Sensitivity 
analyses supported the presence of both disorder and medication effects.

Conclusions Sleep alterations are present in various health conditions.

Keywords Sleep stages, Somnology, Electroencephalogram, Polysomnography, Psychopharmacology, Pharmaco-
electroencephalography, Fourier transform

Introduction
Sleep problems are increasingly recognized as frequent 
ailments with a potentially great negative effect on both 
quality of life and economic productivity [1]. As sleep 
problems frequently appear later in life, the growth of 

the geriatric population makes sleep problems a signifi-
cant, multifaceted public health challenge [2]. A further 
factor underscoring the importance of sleep problems is 
that they can be consequences or complications of pre-
existing problems of physical or mental health, and may 
also arise as a side effect of medications.

Sleep problems can consist of reductions in either 
subjective or objective health quality. Subjective sleep 
quality is associated with wellbeing in older adults with 
multimorbidity, even after controlling the effects of other 
health-related factors [3]. Likewise, sleep quality was 
found to be an independent predictor of quality of life [4, 
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5] and self-rated health [6], suggesting widespread asso-
ciations between self-rated sleep and health.

Studies investigating changes in objective sleep indi-
cators as a function of health or medication are scarce. 
Direct, disease-specific pathophysiological processes 
are known to affect sleep regulation in certain medical 
conditions. For example, Parkinson’s disease, epilepsy 
and other neuropsychiatric disorders are tightly linked 
with fundamental sleep regulatory mechanisms and 
are known to associate with specific alterations of elec-
troencephalographically (EEG)-based, objective sleep 
measures, sometimes even predicting disease-specific 
behavioral correlates [7–9]. Furthermore, some disor-
ders affecting organs other than the brain (for example, 
the liver, the kidney, or the heart) are known to cause 
changes in objectively rated sleep through both direct 
(physiological, e.g., altered melatonin synthesis) and indi-
rect (symptom-mediated, e.g., pain affecting sleep) routes 
[10–12]. Furthermore, some pharmacological agents 
adopted in the treatment of various medical conditions 
are potent modulators of sleep (see [13, 14] for reviews 
of the pharmaco-electroencephalographic literature on 
the effects of drugs applied in the treatment of neuropsy-
chiatric conditions such as benzodiazepine hypnotics 
and selective serotonin reuptake inhibitor (SSRI) anti-
depressants). Specific cases of drug-induced sleep EEG 
effects are benzodiazepines and benzodiazepine receptor 
agonists, also known as positive allosteric modulators of 
 GABAA receptors, which are known for their suppres-
sive effects on low- and facilitating effects on high-fre-
quency EEG activities in all behavioral states, with the 
additional increase of spindle frequency activity in non-
rapid eye movement (NREM) sleep [15–17]. A further 
widely reported medication effect on sleep is the rapid 
eye movement sleep (REM)-suppressive effect of several 
classes of antidepressive pharmacological agents, includ-
ing selective serotonin reuptake inhibitors (SSRI), selec-
tive noradrenalin reuptake inhibitors (SNRI), tricyclic 
antidepressants (TCA) and monoamine oxidase inhibitor 
(MAOI) drugs [18, 19]. In addition, several non-psycho-
tropic medications were reported to cause sleep distur-
bances [20, 21].

These studies, however, tend to be small and focus on 
only a specific health indicator or medication. Moreover, 
the data is typically derived from either non-medical set-
tings (experiments) or clinical studies on highly selected 
samples. To our knowledge, no large-scale, multivari-
ate, ecologically valid (non-experimental) investigation 
on the associations of health conditions, medical treat-
ments, and sleep EEG is available in the literature. Many 
health problems potentially affecting sleep are under-
researched, and studies on medication effects need rep-
lication on non-selected samples of patients, also taking 

into account multimorbidity and pharmacological poly-
therapy. Here, we leverage a large sample (N = 3086) of 
elderly American men to investigate the associations 
between objectively measured sleep and a large set of 
health problems and medications. Given, the ubiquity 
of the spectral analysis of sleep-EEG [22], in addition to 
studying sleep macrostructure we also focus our work on 
the frequency composition of sleep EEG signals.

Methods
Participants and electrophysiology
We used data from the MrOS Sleep Study, downloaded 
from the National Research Resource Resource (NSRR) 
(www. sleep data. org). The MrOS Sleep Study, an ancil-
lary study of the main Osteoporotic Fractures in Men 
Study (MrOS) [23, 24], is an investigation of 3135 elderly 
American men (mean age in current sample: 73.06 years, 
SD = 5.55  years, N = 3086 after exclusion of participants 
using CPAP, BiPAP or mouthpieces, or having undergone 
tracheotomy or oxygen therapy in the past 3 months, as 
recommended for this cohort). Participants underwent 
full unattended polysomnography monitoring between 
December 2003 and March 2005. In these sessions, EEG 
was recorded from the central recording locations C3 and 
C4 using gold cup electrodes, originally recorded with an 
Fpz reference, re-referenced to a contralateral mastoid 
reference. A sampling frequency of 256  Hz and a high-
pass hardware filter of 0.15  Hz were used (see [25] for 
further recording details). Artifacts were automatically 
rejected on a 4-s basis, based on extreme Hjorth param-
eters deviating by at least 2 standard deviations from the 
vigilance state average [26].

Sleep macrostructure was determined based on visual 
scoring by experts using standard criteria [27]. In our 
analyses, we used the following sleep macrostructure 
variables: clock time at sleep onset (expressed relative to 
midnight), total sleep time (TST), wake after sleep onset 
(WASO), sleep efficiency, sleep latency, REM latency, 
REM latency excluding wakefulness, and N1, N2, SWS, 
and REM duration/percentage.

In each participant, we calculated power spectral den-
sity (PSD) as the main quantitative EEG outcome of 
interest. PSD analysis reveals the frequency composi-
tion of the EEG signal. Previous studies [28, 29] demon-
strated that the frequency composition of the sleep EEG 
signal is a “fingerprint-like” trait which is highly similar 
across repeated recordings from the same person even if 
sleep is perturbed, but different across individuals. PSD 
analysis in clinical samples can reveal how brain activ-
ity changes during sleep as a function of disease. Some 
of the constituent frequencies of the EEG signal are 
prominent oscillations with a known physiological origin. 
These include < 2–4  Hz frequencies which mainly index 

http://www.sleepdata.org
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slow waves, hallmarks of highly synchronized neural fir-
ing in deep sleep which play a role in synaptic plasticity 
but diminish with aging [30], and 10–16 Hz frequencies 
which reflect sleep spindles, thalamocortical oscillations 
in shallower NREM sleep which are thought to play a role 
in cognitive functions [31]. Disease-related alterations in 
any frequency would indicate that the disease affects the 
central nervous system in sleep, while alterations at the 
frequencies of well-described oscillations would impli-
cate a specific physiological process.

PSD calculation was implemented with the peri-
odogram() function in MATLAB EEGLab [32], using 
4-s epochs with 50% overlap and Hamming windows. 
(Window overlaps were not feasible and not used for 
short, < 6-s contiguous artifact-free data segments which 
were only sampled with a single 4-s window). PSD was 
calculated separately for NREM and REM and averaged 
across all epochs. PSD estimates were log10 transformed 
to normalize variances and relativized by subtracting the 
PSD mean of all bins from the estimate of each individual 
bin in order to neutralize the effects of between-individ-
ual voltage differences. Spectral resolution was 0.25  Hz 
and PSD estimates between 0 and 48  Hz were used for 
analyses, resulting in 193 bins. (The 0 Hz corresponds to 
mean voltage.) For principal component analysis (PCA) 
(see later in the “Methods” section), this was reduced to 
48 bins by averaging batches of 4 adjacent bins.

Health indicators
During the sleep visit, participants filled out a question-
naire in which they were asked about whether or not they 
suffered from or have been diagnosed with 34 medical 
conditions. Data from four further conditions (arthritis/
gout, cancer, surgical removal of stomach/intestines, and 
kidney stones) was available from the baseline MrOS visit 
and added to the list of conditions. The questions were 
typically phrased as: “Has a doctor or other health care 
provider ever told you that you have [health problem]”. 
We sampled all similar questions available from the data-
set regarding any health problem. However, we excluded 
questions about “bruises or bleeding” and “head injury”, 
because of the high missingness for these variables. As 
part of the sleep study participants were invited to bring 
the medications they regularly take to a personal medical 
visit. The medications they presented were reviewed by 
the attending medical professional, who marked 48 com-
mon medications as present in or absent from the partic-
ipants’ medication regimen. We sampled all medications 
available in the dataset.

Furthermore, participants reported the amount of cof-
fee (in cups) and the number of cigarettes they consumed 
in the 4 h preceding polysomnographic (PSG) recordings.

The full list of medical conditions and medications 
(henceforth jointly referred to as health indicators) is 
available in Table 1.

Statistical analysis
In the first step of analyses, we calculated partial Pear-
son correlations between each health outcome and each 
sleep macrostructure variable or relative PSD at each 
frequency bin and on each channel, controlling for age. 
Point-biserial correlations were calculated in cases of 
dichotomous health variables. Age was controlled in par-
tial correlations because changes in PSD and a worsening 
of health are expected as a function of aging, rendering 
age a strong potential confounder of any health-PSD cor-
relation. All correlation coefficients were corrected for 
false detection rate (FDR) using the Benjamini–Hoch-
berg algorithm [33]. FDR correction was applied across 
the 15 macrostructure variables in the case of macro-
structure correlations and across frequency bins for PSD 
correlations.

In the next steps, performed only for PSD, we aimed to 
identify patterns in the correlations between health and 
PSD. In order to accomplish this, we performed principal 
component analysis (PCA) on the correlation coefficients 
obtained in the first step for PSD variables, considering 
frequency bins (reduced to 48 bins by averaging to sim-
plify analyses) as indicator variables and health indicators 
as observations. Correlation coefficients from recording 
locations C3 and C4 were averaged before PCA, while 
NREM and REM were treated as separate analyses. Prin-
cipal components were retained based on Kaiser’s rule 
(eigenvalue > 1). This step identified typical changes in 
the spectral composition of the sleep EEG when compar-
ing those with certain health indicators to those without 
them.

In the final step, we extracted the principal compo-
nent scores of individual health indicators on each of the 
extracted PCs. Health indicators were cluster analyzed 
based on NREM and REM PCA scores and the number 
of significant correlations (five variables in total) using a 
K-means algorithm. This step highlighted to what extent 
individual health indicators conform to one or more of 
the stereotypical patterns of PSD change identified by 
PCA, and if they can be grouped into meaningful clusters 
based on the similarity of their PSD correlation patterns.

In some additional analyses (see the “Results” section), 
we performed linear models to estimate PSD differences 
between patient groups. For this, we used the fitlm() 
MATLAB function with PSD as the dependent variable, 
and age and patient characteristics (presence of sleep dis-
orders) as the predictors.

All analyses were performed in MATLAB 2022a. Sup-
plementary data is available at https:// zenodo. org/ recor 

https://zenodo.org/records/10118960
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ds/ 10118 960. Raw data is available from www. sleep data. 
org.

Results
Descriptive statistics
Missingness of data was minimal, except for self-reported 
fractures suffered by participants (missing N = 2143). For 
the other health indicators, 0–2.5% of data was missing. 
(A full list of missingness is reported in Additional file 1.)

The proportion of participants reporting medical con-
ditions ranged from 0.6% (Parkinson’s disease) to 49.5% 
(high blood pressure) of the sample. The use of specific 
medications ranged from 0.1% (MAO inhibitors) to 62% 
(vitamin D) of the sample.

Detailed descriptive statistics, including comorbidities 
(overlaps between each pair of binary health indicators), 
are reported in Additional file 2.

Macrostructure correlations
Close to half (43 out of 88) of health indicators were 
significantly associated with at least one sleep macro-
structure variable. REM sleep was the most frequently 
impacted, with increased REM latency without wake 
(for 31 health indicators), REM latency (for 24 health 
indicators), and reduced REM duration (for 16 health 

indicators) being the most common findings. Further-
more, reduced sleep efficiency was found for 14 health 
indicators, and increased sleep latency for 11. While 
decreased REM latency or increased REM duration was 
not unequivocally found for any health indicator, sleep 
efficiency was increased in those taking trazodone and 
calcium while sleep latency was reduced in those tak-
ing calcium. Based on the sum of absolute correlations, 
antidepressant use, calcium supplementation, smoking 
before sleep, and benzodiazepine use were the health 
indicators most strongly associated with sleep macro-
structure. Generally, all correlations were modest at best, 
with the largest correlation at r = 0.269 (between SSRI 
use and REM latency without wake) and a mean absolute 
correlation of 0.025 across all macrostructure variables 
and health indicators.

Figure 1 illustrates the relationship between sleep mac-
rostructure and health indicators. Univariate correlations 
for all variables are available in Additional file 3.

Univariate PSD correlations
Health indicators were less related to the frequency 
composition of the sleep EEG than to sleep macrostruc-
ture. About 40% (34–42% depending on EEG recording 
location and vigilance state) of the 88 health indicators 

Table 1 Health indicators in the analyses

Medications
 ACE inhibitor Ca-channel blocker Insulin Long-acting benzo

 Antidepressants Calcium Short-acting benzo Sildenafil

 Alpha-adren. blocker Inhaled corticosteroid MAO inhibitor SSRI

 Alzheimer medication Oral corticosteroid Osteoporosis drug Statin

 Androgen COX-II inhibitor Sleep medication Tricyclic

 Antiandrogen Loop diuretic Opioid analgesic Thyroid agonist

 Antispasmodic Potassium-sparing diuretic Anticonvulsant Trazodone

 Hypotensive, angiotensin Thiazide Nonbenzo, nonbarbiturate sedative TZD medication

 Aspirin Erectile dysfunction med Nitrates Vitamin D

 Benzodiazepine Gemfibrozil NSAID Coumarin anticoagulant

 Beta-blocker H2 antagonist Phosphodiesterase inhibitor Zolpidem

 Bisphosphonate Hypoglycemic agent Proton pump inhibitor Zolpidem within 24 h

Medical conditions and behaviors
 Allergy Congestive heart failure Heart rate problem Parkinson’s disease

 Angina COPD High BP Peripheral arterial disease

 Asthma Coronary heart disease High thyroid Prostatitis

 Atrial fibrillation Cups of coffee within 4 h Intermittent claudication Rheumatic heart disease

 Cardiovascular surgery Diabetes Kidney disease Rheumatoid arthritis

 Cataracts Diastolic blood pressure Leg pain walking Sleep apnea

 Cerebrovascular disease Falling within 12 months Liver disease Sleep disorder

 Chest pain Fracture within 12 months Low thyroid Stroke

 Chronic bronchitis Glaucoma Osteoarthritis Systolic blood pressure

 Cigarettes within 4 h Heart attack Osteoporosis Transient ischemic attack

https://zenodo.org/records/10118960
http://www.sleepdata.org
http://www.sleepdata.org
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investigated were not significantly correlated with sleep 
EEG PSD in any spectral bin, as evidenced by the pre-
ponderance of zero FDR-corrected correlations (Fig.  2). 
The frequency ranges most commonly associated with 

health indicators were low (< 5  Hz) and intermediate 
(~ 15–30 Hz) frequencies, with an additional substantial 
NREM-specific peak in the sleep spindle frequency range 
(~ 12–15 Hz).

Fig. 1 The relationship between sleep macrostructure and health indicators. Panel A shows the number of significant (after FDR correction) 
negative, non-significant, and significant positive correlations with each macrostructure variable out of the 88 health indicators. Panel B illustrates 
the 15 variables with the strongest association with sleep macrostructure, expressed as the sum of absolute correlations across all macrostructure 
variables). Panel C illustrates all individual correlations between sleep macrostructure and health indicators. Significant correlations (after FDR 
correction) are shown with a colored circle, the radius of which is proportional to the absolute correlation value. Red circles indicate positive 
and blue ones negative correlations. For non-significant correlations, no circle is shown, and health indicators with zero significant macrostructure 
correlations are not shown

Fig. 2 The relationship between sleep EEG PSD and health indicators. Panel A shows the percentage of health indicators significantly (after 
FDR correction) with PSD as a function of frequency, recording location, and vigilance state. Panel B illustrates the distribution of the extent 
of correlations with EEG PSD. The total bandwidth refers to the total number of frequencies, regardless of continuity, exhibiting significant 
FDR-corrected correlations with a health indicator. Note that for a substantial number of health indicators, no significant PSD correlation was seen, 
but a small minority of health indicators correlated with PSD in a total range of over 20 Hz
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Interestingly, health indicators with zero or close to 
zero associations to EEG PSD included many with pre-
sumably great effects on sleep, such as the presence of 
sleep disorders, sleep apnea, or self-reported cigarette 
smoking and coffee consumption on the day before sleep 
(Fig. 3).

In Fig. 4, we illustrate four health indicators which, in 
contrast to these, demonstrated a significant correlation 

with sleep EEG PSD. Medication with zolpidem was 
associated with increased PSD in the sigma band, cor-
responding to sleep spindles, selectively in NREM. 
Medication with selective serotonin reuptake inhibitors 
(SSRIs) was associated with decreased PSD in the low 
and increased PSD in high frequencies. Atrial fibrilla-
tion and medication with coumarin anticoagulants were 
associated with an increase in the lowest and highest and 

Fig. 3 Selected health indicators with weak associations with EEG PSD. The charts show Pearson correlations (for binary variables, corresponding 
to point-biserial correlations) between relative log10 PSD and the self-reported presence of any sleep disorder, sleep apnea, cigarettes smoked, 
and cups of coffee consumed within 4 h of sleep. Correlations that are significant after correction for FDR are marked with a circle with a color 
marking the appropriate channel and vigilance state

Fig. 4 Selected health indicators with strong associations with EEG PSD. The charts show Pearson correlations (for binary variables, corresponding 
to point-biserial correlations) between relative log10 PSD and the self-reported diagnosis of atrial fibrillation, medication with zolpidem, SSRIs, 
and coumarin anticoagulants. Correlations that are significant after correction for FDR are marked with a circle with a color marking the appropriate 
channel and vigilance state
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a reduction of middle frequencies. All univariate corre-
lations are illustrated in a similar manner in Additional 
file 4.

In subsequent analyses, we sought to identify patterns 
in the non-zero PSD correlations we observed.

Principal component analysis of PSD correlations
We found that the association of PSD in the 193 fre-
quency bins with health indicators is highly stereo-
typical, with large sets of bins co-correlating with the 
same disorders (Fig.  5A). In other words, health-related 
changes in the frequency composition of the sleep EEG 
are not specific to disorders and medications, but simi-
lar frequencies tend to be associated with many health 
indicators. Therefore, in the next step of our analyses, 
we applied PCA to the univariate health-PSD correla-
tions we obtained to reduce the dimensionality of these 
variables. We found only two PCs accounted for approxi-
mately 90% of the variance. This phenomenon and the 
loadings on the two PCs were similar across NREM and 

REM vigilance states. PC loadings of frequency bins on 
the top PCs are shown in Fig. 5B.

The strongest component had opposite-sign loadings 
on low (~ 0–25  Hz) and high (> 25  Hz) frequencies in 
NREM, with a similar pattern but less pronounced load-
ings at the lowest (~ < 10  Hz) frequencies in REM. This 
component accounted for 55.2% of the between-bin vari-
ance in correlations with health indicators in NREM and 
45.2% in REM. This component can be interpreted as an 
acceleration of EEG rhythms, with a loss of low and a rel-
ative increase in high frequencies, possibly signifying the 
loss of sleep depth or an increase in noise. The strength 
and loading pattern of this component suggests that the 
most prominent change in the frequency composition of 
the sleep EEG, present in many health conditions is the 
disappearance of slow frequencies and the relative prolif-
eration of fast ones.

The second component had negative loadings on the 
lowest and highest frequencies and positive loadings on 
intermediate frequencies. It accounted for 34.7% of the 
variance in NREM and 40.7% in REM. This component 

Fig. 5 Stereotypical patterns in the health-PSD correlations. Panel A shows the co-correlation (Pearson correlation of correlations across health 
indicators) of PSD values between different frequency bins on the selected C3 channel, separately in NREM and REM. High values of this variable 
indicate that a pair of two PSD values tend to be correlated with health indicators in a similar manner. Panel B shows the principal component 
loadings of each frequency bin in NREM and REM. Loadings are shown for all PCs with eigenvalue > 1. As the sign of loadings is arbitrary, they were 
multiplied by − 1 in REM to optimally visualize the similarity of patterns. Line widths are proportional to the log of variance accounted for
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can be interpreted as a change in the proportion of sigma 
and beta frequency relative to other rhythms. In other 
words, beyond and independent of the acceleration of 
EEG rhythms, the second most prominent health-related 
change in the sleep EEG tends to be the increase or 
decrease of mid-frequency activity.

One more PC in NREM and two more in REM were 
retained following Kaiser’s rule. However, these PCs were 
much weaker, accounting for less than 7% of the variance. 
While the interpretation of REM components is less 
straightforward, the third NREM component had oppo-
site loadings on sigma and low-frequency power, suggest-
ing a specific involvement of sleep spindle activity.

Principal component scores
We next extracted the scores of individual health indi-
cators on the extracted PCs. Strong correlations were 
observed between the first two PCs extracted indepen-
dently from NREM and REM data (Table 2), confirming 

the visual similarity of component loadings (Fig.  5) and 
indicating that these largely reflect vigilance state-inde-
pendent changes in the spectral composition of the EEG.

Figure  6 projects specific health indicators onto the 
axes specified by the first two NREM PCs and the number 
of significant health-PSD correlations. Because REM and 
NREM PC scores were highly correlated, and because the 
first two PCs accounted for nearly 90% of all variance in 
both vigilance states, these two PCs illustrate health-PSD 
correlation patterns with relatively little loss of informa-
tion. In an attempt to create groups of health indicators 
with similar relations to PSD, we used a K-means clus-
ter analysis algorithm with loadings on the first 2 NREM 
and REM PCs and the number of significant correlations 
as independent variables. After initial visual inspection 
of the resulting 3D scatterplot, we specified 3 clusters to 
be extracted. Health indicators are color coded by clus-
ter membership. An interactive, rotatable MATLAB fig-
ure from which these figures were extracted and a video 
showing its rotation are available in Additional files 5–6.

Cluster 1 contained the vast majority of health out-
comes (N = 63, 71.59%). Health indicators in this cluster 
had at most a few significant correlations with PSD and 
low loadings on both PCs. These health indicators can be 
characterized as having retained sleep.

Cluster 2 was characterized by a larger number of 
significant health-PSD correlations and high absolute 
loadings on PC2. It consisted of 18 health conditions 
(20.45%). Interestingly, both negative and positive load-
ings were observed. Health indicators in Cluster 2 with 
negative PC loadings (diminished mid-frequency activ-
ity) tended to be those associated with cardiovascular 
conditions: angina pectoris, cardiovascular surgery, cer-
ebrovascular disease, chest pain, congestive heart failure, 
heart attack, heart rate problem, and transient ischemic 
attack. Atrial fibrillation exhibited a similar pattern but 

Table 2 Correlations between PC scores of health indicators, 
obtained separately from NREM and REM data. Data is shown 
for all PCs that were retained based on Kaiser’s rule. High 
correlations indicate that the degree to which health indicators 
conformed to the stereotypical PSD change patterns revealed 
by the PCs was similar in NREM and REM, suggesting vigilance 
state-independent effects. Note that the sign of the correlation 
is unimportant as the sign of PC loadings is arbitrary and that the 
sign of REM loadings was flipped for visualization in Fig. 5 but not 
for the calculations shown in this table

NREM1 NREM2 NREM3

REM1  − 0.853 0.53  − 0.015

REM2  − 0.499  − 0.823 0.056

REM3  − 0.002 0.1  − 0.444

REM4  − 0.059 0.033 0.762

Fig. 6 The position of individual health indicators as a function of PSD correlation PCs and the number of significant PSD correlations. The 3D 
scatterplot is rotated to highlight scores on specific PCs. Panel A illustrates scores on PC1 while Panel B illustrates scores on PC2. Marker colors are 
based on cluster membership: blue for Cluster 1, green for Cluster 2, and red for Cluster 3
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was formally classified as Cluster 3 due to more corre-
lations, while asthma and hypoglycemic agent use were 
also classified as Cluster 2 with negative PC2 loadings. 
These disorders were characterized by the specific loss of 
mid-frequency (sigma-beta) activity. Selected members 
of Cluster 2 with positive PC2 loadings are illustrated in 
Fig. 7.

Health indicators in Cluster 2 with positive PC2 load-
ings (increased mid-frequency activity) were short-acting 
and long-acting benzodiazepine use, systolic and dias-
tolic blood pressure, and proton pump inhibitor use. 
Benzodiazepine use in general exhibited a similar pat-
tern but due to more correlations was formally classified 
as Cluster 3. In these conditions, the specific increase of 
mid-frequency (sigma-beta) activity was characteristic. 
Selected members of Cluster 2 with positive PC2 load-
ings are illustrated in Fig. 8.

Cluster 3 was characterized by a large number of sig-
nificant health-PSD correlations and particularly high 
loadings on PC1. It consisted of seven health conditions 
(7.95%). Health indicators in this cluster were the follow-
ing: antidepressant medication, SSRIs, Parkinson’s dis-
ease, Alzheimer medication, coumarin anticoagulant use, 
atrial fibrillation, and benzodiazepine use. Benzodiaz-
epine use, however, was an atypical cluster member due 
to its negative PC1 loading. Due to the pattern of PSD 
loadings on PC1, the other health indicators in the clus-
ter can be characterized to have accelerated sleep EEG, 
with fewer low and more high-frequency components. 
Selected members of this cluster are illustrated in Fig. 9.

NREM sigma alterations in sleep medication users
We previously used PCA and cluster analysis to reduce 
the dimensionality of our data and find patterns in the 
association between health indicators and EEG PSD. 
While our findings confirmed that these associations 
are stereotypical and provided evidence that meaning-
fully distinct groups of health conditions with character-
istic relationships to sleep exist, they did not capture all 
details of the association between sleep and health. Spe-
cifically, strong correlations between specific indicators 
and specific EEG frequencies may have been missed by 
these techniques as PCA identifies broad-frequency pat-
terns which co-occur across many health indicators and 
cluster analysis also relies on the number of correlations 
between health indicators and PSD. Upon reviewing 
univariate associations, we discovered that sleep medi-
cations (benzodiazepines and zolpidem) are specifically 
associated with increased activity in NREM sigma fre-
quencies, most likely indicating sleep spindles.

Three variables (“Zolpidem,” “Zolpidem within 24  h,” 
and “Nonbenzo, nonbarbiturate sedative”) indicated 
zolpidem use. These variables were strongly related, with 
97% of those taking nonbenzo, nonbarbiturate seda-
tives also reporting regularly taking zolpidem and 68% of 
those taking zolpidem also taking it within 24  h (Addi-
tional file 2). All three variables were classified as Clus-
ter 1 (no substantial sleep alterations). However, they had 
relatively strong negative PC1 loadings, and in univariate 
analyses, all showed significant, specific positive correla-
tions with NREM sigma-frequency activity.

Fig. 7 Selected health indicators in Cluster 2 with negative PC2 loadings. Axis Y shows the point-biserial correlation between health indicators 
and sleep EEG PSD. Correlations significant after correction for multiple comparisons are marked with a dot in the appropriate color above the lines. 
Note the negative correlation with mid-frequency activity
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Benzodiazepine use was indicated by three logically 
nested variables (“Short-acting benzodiazepine” or 
“Long-acting benzodiazepine” use, with “Benzodiazepine 
use” considered positive in both cases). While the first 
two variables were classified as Cluster 2 and the third as 
Cluster 3 due to the more widespread PSD correlations 
of the latter, all three had a similar pattern of associa-
tion with PSD. Negative PC1 and positive PC2 loadings 
were observed, indicating an acceleration of EEG activity 

with a specific increase in the intermediate frequencies. 
In univariate analyses, however, it became clear that 
beyond a general, vigilance state-independent increase in 
the intermediate frequencies, a NREM-specific increase 
in sigma frequency activity is associated with benzo-
diazepine use, likely suggesting that these medications 
increase sleep spindling.

Figure  10 illustrates univariate associations between 
zolpidem use, benzodiazepine use, and PSD.

Fig. 8 Selected health indicators in Cluster 2 with positive PC2 loadings. Axis Y shows the point-biserial correlation between health indicators 
and sleep EEG PSD. Correlations significant after correction for multiple comparisons are marked with a dot in the appropriate color above the lines. 
Note the positive correlation with mid-frequency activity

Fig. 9 Selected health indicators in Cluster 3. Axis Y shows the point-biserial correlation between health indicators and sleep EEG PSD. Correlations 
significant after correction for multiple comparisons are marked with a dot in the appropriate color above the lines. Note the negative correlation 
with low-intermediate and the positive correlation with high frequencies
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Separating disorder and medication effects
In our final analyses, we aimed to establish whether 
changes in EEG PSD are associated with health prob-
lems, or the medications used to treat them. This is an 
issue in the case of five health indicator clusters: (1) Alz-
heimer’s disease, (2) Parkinson’s disease, (3) depression/
antidepressant use, (4) benzodiazepine use, and (5) heart 
disease.

In the case of Alzheimer’s and Parkinson’s disease, dis-
ease and treatment effects could be separated by compar-
ing the sleep of treated and untreated patients. However, 
for Alzheimer’s disease, only disease-specific medication 
(N = 56) data is available for this wave of MrOS, render-
ing such an analysis unfeasible. For Parkinson’s disease 
(N = 19), 14 participants reported taking dopaminergic 
medication, likely for this condition, and 5 did not. The 
small size of this sample also precludes definitive analyses 
separating medication and disorder effects.

To separate the effects of depression from antidepres-
sant use, we calculated sleep correlations with scores on 
the Geriatric Depression Scale, also available in MrOS, 
in participants not reporting antidepressant use. Even 
in antidepressant-naïve participants, increased REM 
latency, reduced REM duration, and an acceleration of 
EEG rhythms were seen, much like in SSRI users (Sup-
plementary Fig. S1), suggesting disease as opposed to 
drug effects. However, some effects (increases in WASO 
and reductions in sleep efficiency, a relative increase in 
alpha-frequency EEG rhythms) were only seen in relation 
to GDS scores, while the increase in REM latency and 

reduction in REM duration was more prominent in rela-
tion to antidepressant use.

Only SSRI use was associated with characteristics 
of PSD changes, the use of other antidepressant drugs 
(MAOIs, tricyclic antidepressants, and trazodone) was 
not (Additional file 4, see also Supplementary Table S1 for 
a tabulation of antidepressant use). Additional analyses 
confirmed either FDR-corrected significant differences 
(trazodone) or trends which do not survive FDR cor-
rection (TCAs) between EEG PSD in SSRI users and the 
users of other antidepressants (Supplementary Fig. S2). 
Thus, while depressive symptoms were alone associated 
with reduced slow and increased high-frequency activity 
in the sleep EEG, this effect was especially prevalent in 
SSRI users, either due to a causal effect of these drugs or 
because of systematic differences in the characteristics of 
patients taking different types of antidepressants.

A fourth health indicator associated with sleep EEG 
PSD was benzodiazepine use. For this indicator, we had 
strong hypotheses about drug, rather than disorder 
effects. This is because benzodiazepine use was associ-
ated with similar EEG patterns previously reported in 
experimental studies [15, 17], with reduced slow and 
increased fast-frequency activity and enhanced spin-
dling. For an empirical analysis, we took advantage of the 
fact that benzodiazepines are not exclusively prescribed 
to treat sleep disorders. Of the three sleep quality scales 
available in MrOS, benzodiazepine users reported worse 
sleep on the Pittsburgh Sleep Quality Index (B = 3.82, 
p =  10−41), better sleep on the Functional Outcomes of 

Fig. 10 The correlation between PSD and zolpidem/benzodiazepine use. Axis Y shows the point-biserial correlation between health indicators 
and sleep EEG PSD. Correlations significant after correction for multiple comparisons are marked with a dot in the appropriate color above the lines. 
Note that a NREM-specific increase in sigma activity is associated with the use of these medications, but it was accompanied by reductions 
in low-frequency and increases in high-frequency activity in benzodiazepine users only
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Sleep Questionnaire (B =  − 0.53, p =  10−4) and a trend to 
better sleep on the Epworth Sleepiness Scale (B =  − 0.63, 
p = 0.052). (All models corrected for age.) Of the 134 par-
ticipants using benzodiazepines, 34 reported a diagnosed 
sleep disorder but 100 did not. We hypothesized that if 
it is not the medication that causes sleep alterations, 
but the sleep disorders for which medications are taken, 
then significant differences will be observed between 
benzodiazepine users with and without sleep disorders. 
(While some participants may be taking benzodiazepines 
for sleep problems without a formal diagnosis, the cases 
with formal diagnoses can be assumed to be the more 
severe cases.) Therefore, we compared sleep EEG PSD in 
benzodiazepine users with or without sleep disorders in 
age-corrected linear models. We found no significant dif-
ferences even if no correction for false discovery rate was 
applied (Supplementary Fig. S3), suggesting that we have 
indeed found not disorder, but drug effects.

Finally, sleep alterations were observed in several dis-
eases of the cardiovascular system, mainly characterized 
by vigilance state-independent reductions in beta-fre-
quency activity. As many disorders of the cardiovascular 
system (angina pectoris, cerebrovascular disease, chest 
pain, congestive heart failure, heart attack, heart rate 
problem, TIA) and various treatments (cardiovascu-
lar surgery, beta-blocker use) were implicated, the most 
likely implication is that sleep alterations are the conse-
quences of cardiovascular disorders themselves, and not 
the highly variable interventions used to treat them.

Discussion
Our work aimed to replicate and extend the previous, 
largely experimental, literature on health-related sleep 
alterations in a naturalistic multivariate study of a large 
sample of elderly American men. By far the most numer-
ous group of health indicators are those characterized 
by retained sleep EEG. This is shown by zero or very few 
correlations between these indicators and PSD. Surpris-
ingly, some of these indicators are either directly related 
to sleep (for example, the presence of sleep disorders), 
or are strongly hypothesized (for example, alcohol con-
sumption [34]) to affect it. However, statistically sig-
nificant differences in the sleep EEG are still observed 
in nearly a majority of health indicators. Among mac-
rostructure markers, increased REM latency and REM 
duration, while among EEG markers, an acceleration 
of EEG rhythms and specific changes in mid-frequency 
activity were the strongest indicators of health. We iden-
tified four groups of health conditions in which sleep 
changes were especially pronounced: (1) age-related 
disorders (Parkinson’s and Alzheimer’s disease), (2) dis-
orders of the cardiovascular system, (3) depression and 
antidepressant use, and (4) hypnotic use.

In line with previous reports based on small samples of 
patients with Parkinson’s [9] or Alzheimer’s [35] disease, 
we found that age-corrected sleep alterations in age-
related disorders are similar to changes related to normal 
aging. Both disorders were characterized by an accel-
eration of EEG rhythms, with a specific increase in REM 
latency in Parkinson’s disease. Despite purported changes 
in cholinergic neuronal transmission causing reductions 
in REM sleep [35], we found that Alzheimer’s medica-
tion use was associated with reduced sleep efficiency and 
increased sleep latency, but not with substantial REM 
sleep changes.

Cardiovascular conditions were the medical diagnoses 
most frequently associated with sleep alterations. The 
typical pattern seen in these disorders was the increase 
in REM sleep latency, a reduction in REM duration/
percentage, as well as an alteration of mid-frequency 
(sigma-beta) sleep EEG activity during both NREM and 
REM sleep. Both REM sleep [36] and mid-frequency 
EEG activity in rats [37] or humans [38, 39] undergo 
substantial circadian modulation, as opposed to NREM 
sleep and low-frequency activity where homeostatic 
modulation prevails [30]. Recently, it has been suggested 
that immune-mediated denervation of the pineal gland 
underlies circadian demodulation and consequent sleep 
disturbance in cardiac disease patients [12]. Our find-
ing that sleep markers under strong circadian regulation 
are those that are the most affected in cardiovascular 
disease coheres with the concept of circadian demodu-
lation of sleep in these patients [12]. In the case of adr-
energic  beta1-receptor blockers, their known interference 
with pineal melatonin production [40] may be another 
mechanism underlying circadian demodulation and the 
resulting changes in REM sleep and mid-frequency EEG 
activity. Nevertheless, this hypothesis requires further 
confirmation.

Our findings showed accelerated EEG rhythms, 
increased REM sleep latency, reduced REM sleep dura-
tion/percentage, and increased N2 sleep in participants 
reporting ongoing treatment with SSRIs. SSRI antide-
pressants are known for their inhibition of the reuptake 
of serotonin from the synaptic cleft, thus potentiating 
the effect of the transmitter on pre- and postsynaptic 
receptors. Our findings on the acceleration of sleep EEG 
frequencies in patients treated with SSRIs confirm the 
excitatory profile of these drugs [41] and cohere with for-
mer studies performed on a low number of healthy vol-
unteers [42–44]. We found that these effects were specific 
to SSRI treatment, with different patterns emerging for 
other antidepressants. Tricyclic antidepressants (TCAs) 
are known for their sedative side effects due to antago-
nizing muscarinic and histamine receptors, resulting 
in a different sleep–wake-promoting effect. Trazodone 
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exhibits antagonistic effects on 5-HT2A (serotonergic) 
receptors, resulting in a wake-inhibiting and slow-wave 
sleep-promoting effect [45] and a sedative, sleep-induc-
ing profile of this mediation [46]. TCAs and trazodone 
were not significantly associated with sleep EEG changes, 
but the former were associated with increased N2 and 
decreased SWS sleep, while the latter was associated with 
increased sleep efficiency, SWS, and decreased N1 sleep, 
in line with clinical experience. A direct comparison of 
patients undergoing different antidepressive treatment 
regimens supported that the acceleration of EEG rhythms 
is specific to SSRIs. However, the fact that the severity of 
depressive symptoms correlated with sleep alterations in 
a similar manner as SSRIs even in antidepressant-naïve 
participants suggests that the separation of the effects 
of SSRI treatment from that of the underlying illness is a 
complex issue in an ecologically valid observational study 
such as ours.

Finally, we found that sleep medication use in a natural-
istic setting was associated with sleep changes in the way 
suggested by experimental studies. Both the use of benzo-
diazepines and zolpidem were associated with increased 
sleep spindle-frequency activity in NREM, suggesting 
a common effect of these positive allosteric modulators 
of the  GABAA receptor complex. The imidazopyridine 
zolpidem, with higher affinity for the α1 subunit of the 
 GABAA receptor complex [47], had no significant asso-
ciation with other frequency components. Benzodiaz-
epine use, however, was associated with a more complex 
and likely detrimental pattern of sleep changes: attenu-
ated delta and increased beta EEG activity. This is a well-
known peculiarity of benzodiazepine hypnotics, termed 
as the EEG fingerprint of diazepam, and revealed to be 
pharmacologically independent of its hypnogenic effects 
[48]. While some studies also reported the attenuation 
of low-frequency NREM sleep EEG activity by zolpidem 
[16, 49–51], most of these were performed on young 
healthy volunteers, and the low-frequency attenuation 
effect of zolpidem may be age-dependent [52, 53]. Unlike 
benzodiazepines which suppressed SWS and enhanced 
N2, zolpidem treatment was not associated with a signifi-
cant alteration of sleep structure of our subjects. Thus, 
the current findings suggest that the physiological char-
acteristics of sleep are more preserved in elderly patients 
treated with zolpidem as compared to subjects treated 
with short- and long-acting benzodiazepines, whereas 
the enhancement of spindle frequency activity is a shared 
pharmaco-EEG effect of these drugs.

Our work has some limitations. First, as with all obser-
vational studies, ours has favorable statistical power but 
a limited ability to infer causality. This has been only 
partly remedied by the methods we used (e.g., estab-
lishing symptom severity effects in antidepressant-naïve 

participants) and we cannot always fully answer whether 
health-related sleep alterations are the consequence of ill-
ness or medication. Second, our study was performed in 
a sample of elderly American men and our findings may 
not automatically generalize to other populations. Third, 
we emphasize that our method of using K-means cluster 
analysis to establish health indicator clusters based on 
EEG PSD alterations is exploratory. While the use of this 
method in our view revealed well-defined and conceptu-
ally useful clusters of health indicators characterized by 
similar EEG PSD changes, our results are not meant to 
suggest that a fixed number of health indicator groups 
with no overlap exist.

Conclusions
In a multivariate analysis of a large, ecologically valid 
dataset we found that sleep is preserved in many disor-
ders and pharmacological regimes. In the cases where 
sleep was associated with health indicators, previous 
experimental studies on the pharmacological effects of 
sleep were well-replicated. While medication use itself, 
rather than the presence of the sleep disorders they are 
used to treat, likely accounts for altered sleep in hyp-
notic users, age-related disorders, depression, and car-
diovascular disorders are likely themselves causal for 
sleep changes. In the latter case, our findings support a 
recently proposed model of immune-mediated circadian 
demodulation.

Given the importance of well-preserved sleep in the 
maintenance of a good quality of life, wellbeing, and 
economic productivity [1, 3–5], as well as the crucial 
role of sleep in overall health [6], research revealing the 
complex associations between medical conditions and 
objective somnological indices is ideally suited to guide 
endeavors to maintain health in both typical and aging 
populations. Furthermore, replicating or extending find-
ings of laboratory studies about specific sleep indicators 
affected by health in naturalistic settings can foster basic 
and clinical sleep research. Our work both reveals a com-
plex picture of the relationship between sleep and health 
in the elderly, it replicates and extends the extant phar-
maco-EEG literature in an ecologically valid setting. The 
hypothesized immune-mediated circadian origin of the 
association between reduced mid-frequency EEG activity 
in heart conditions suggests a need for additional studies 
replicating and investigating this phenomenon in depth.
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