Barik BMC Medicine 2012, 10:104
http://www.biomedcentral.com/1741-7015/10/104

REVIEW

BMC Medicine

Open Access

New treatments for influenza

Sailen Barik'

Abstract

Influenza has a long history of causing morbidity and
mortality in the human population through routine
seasonal spread and global pandemics. The high
mutation rate of the RNA genome of the influenza
virus, combined with assortment of its multiple
genomic segments, promote antigenic diversity and
new subtypes, allowing the virus to evade vaccines
and become resistant to antiviral drugs. There is thus
a continuing need for new anti-influenza therapy
using novel targets and creative strategies. In this
review, we summarize prospective future therapeutic
regimens based on recent molecular and genomic
discoveries.
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Review

Background

Influenza, commonly known as ‘flu’, is a respiratory infec-
tion contracted by 5% to 50% of the US population
annually, roughly 200,000 of whom are hospitalized and
25,000 die (with significant year-to-year variation) [1-4].
Clinically, influenza presents itself with high fever, chills,
sore throat, headache, runny or stuffy nose, weakness,
muscle pain and sometimes diarrhea (vomiting in chil-
dren). Although more severe than common cold, influenza
is generally a self-limiting disease in healthy adults that
lasts about a week, but cough and lethargy may continue
for some time. In the population, influenza follows the
general pattern that now appears to characterize essen-
tially all respiratory infections, in that it can be particularly
hazardous to individuals with poor immunity such as chil-
dren and the elderly, and those with pulmonary, cardiovas-
cular or other complications. Pneumonia, either a direct
result of the virus infection in the lung, or through
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secondary bacterial infections shortly after the viral epi-
sode, is also common in influenza, particularly among
adults [2]. Secondary bacterial pneumonia often compli-
cates influenza and in fact played a significant role in the
morbidity and mortality associated with all past pan-
demics, including the most recent ‘swine flu” of 2009 [2,5].
Prompt antibiotic treatment is required to reduce mortal-
ity. Relatively rare complications of influenza include myo-
sitis (muscle inflammation), myocarditis and pericarditis
(affecting the heart), Reye’s syndrome and possibly Guil-
lain-Barré syndrome. Although the primary target and
clinically relevant tissue in influenza virus infection is the
respiratory epithelium [2], facultative infection of other
organs, such as the cardiac or skeletal muscle, is possible
and has occasionally been documented in cell culture and
experimental animal infections [6-10]. The predominant
mode of natural transmission of the influenza virus is by
aerosols, generated by coughing or sneezing; however, it is
also transmitted by nasal secretions and contact with con-
taminated surfaces. While all respiratory viruses, including
influenza, use the nose as the common entry channel, they
can also enter through the eye, likely via the tear duct,
draining into the sinus and the airways [11]. The virus par-
ticles are inactivated by the ultraviolet rays in sunlight and
common disinfectants such as soap. Thus, frequent hand
washing is recommended during influenza epidemics to
minimize virus spread.

The influenza viruses are RNA viruses of the Orthomyx-
oviridae family, in which the viral genome is divided into
multiple segments [4]. For example, the total genome of
influenza A, which is responsible for the vast majority of
seasonal influenza in humans, consists of eight negative
sense (anti-mRNA sense) RNA segments. Together, they
code for 10 viral proteins: three subunits of viral RNA-
dependent RNA polymerase (RARP) (PA, PB1, PB2); major
surface glycoproteins, hemagglutinin (HA) and neuramini-
dase (NA); nucleocapsid protein (NP); matrix proteins
(M1, M2); and two nonstructural proteins, NS1 and NS2
[4]. In some strains of animal influenza virus, the PB1
gene also produces a small, 87-residue protein, named
PB1-F2, by internal translational initiation of an alternate
reading frame; this protein shows a predominantly mito-
chondrial localization and promotes apoptosis in immune
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cells, likely aiding viral transmission [12]. The influenza
viral genomic RNA is wrapped with the NP protein and
the resultant ribonucleoprotein (NP-RNA) is transcribed
by the viral RARP to produce viral mRNAs that serve as
templates for viral protein synthesis. The NP-RNA com-
plex is encapsidated in a lipid bilayer, studded with the
HA and NA glycoproteins and traversed by the M2 pro-
tein (Figure 1), which is an ion (proton) channel [4]. The
nonstructural proteins are so named because they are not
packaged into mature virus particles; however, they play
essential roles in the infected cell. NS1 interacts with a
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large number of host proteins including several members
of the innate immune pathways [13-20], and hence contri-
butes to virus growth, pathogenicity and tropism [21-24].
NS2, also called nuclear export protein, mediates nucleus-
to-cytoplasmic export of the viral RNA by acting as an
adaptor between viral ribonucleoprotein complexes and
the nuclear export machinery of the cell.

Influenza viruses are divided into subtypes A, B and C,
based on genetic and antigenic differences in their HA
and NA surface glycoproteins [4,25]. Seasonal human
influenza is caused by both types A and B, whereas C is
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Figure 1 Anti-influenza drugs and their biological targets. The relevant viral proteins (color-coded) and old and new drugs targeting them
are shown (not drawn to scale). The genomic ribonucleoprotein complex is shown as tightly coiled. Influenza viral RNA synthesis occurs in the
infected host nucleus using this ribonucleoprotein as a template, while translation occurs in the cytoplasm. Neuraminidase (NA) and the drug
candidate, Fludase, cleave the sialic acid receptor on the cell membrane, as indicated by the cutting scissors. Nonstructural proteins (only NST is
shown) are not packaged in mature virions. Diverse viral products activate an inflammatory response that can be quelled by the use of anti-
inflammatory treatments, such as non-steroidal anti-inflammatory drugs. Potential future drug regimens, targeting influenza-relevant cellular
functions, are shown at the bottom. (Influenza virion image credit: Dan Higgins and Doug Jordan, CDC Public Health Photo Library, image
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Barik BMC Medicine 2012, 10:104
http://www.biomedcentral.com/1741-7015/10/104

rare and only causes a mild disease in children [3,4]. The
type A viruses also naturally infect a variety of nonhuman
species, including birds, pigs, horses, cats, dogs, seals and
whales [3,25-28]. There are 16 known HA (H1 to H16)
and 9 NA (N1 to N9) subtypes in influenza A [4,25], lead-
ing to the current HxNy nomenclature. Routine human
infections of seasonal influenza are mainly due to HIN1,
HIN2 and influenza B; however, H3N2 is gradually
becoming more abundant [29]. In 2011, a new variant of
H3N2, sometimes referred to as H3N2v, was found in a
dozen patients in the US. The more deadly pandemics and
epidemics have been caused by various mutant variants
and subtype combinations. The 1918 ‘Spanish flu” and the
2009 ‘swine flu” were both caused by HIN1 type viruses,
the 1957 ‘Asian flu’ was caused by an H2N2, the 1968
‘Hong Kong flu’ by H3N2 and the 2004 ‘bird flu’ by H5N1.
Antigenic drift within a specific HA or NA number is also
common (see ‘Difficulties of prevention and treatment of
influenza’ below).

An interesting and clinically relevant aspect of pan-
demic and epidemic influenza that sets it apart from
seasonal influenza is the induction of the so-called cyto-
kine storm, consisting of interleukin-6, tumor necrosis
factor o and interferon-y. Together, these proinflamma-
tory cytokines cause systemic inflammatory response
syndrome, leading to multiorgan failure that includes
airways destruction, vascular endothelial damage and
plasma leakage [30-35].

Difficulties of prevention and treatment of influenza
There are a number of difficulties in influenza treatment
and prevention, contributing to the constant threat of
the disease. These are summarized below. A prior
understanding of these factors is clearly important in
strategizing new treatments.

Rapid mutability

Like all RNA genomes, the influenza virus genome lacks
a proofreading mechanism and thus mutates relatively
frequently. Mutations may offer the virus various selec-
tive advantages, such as resistance to existing vaccines
and antiviral drugs [36] - even small changes in the viral
HA and NA antigen sequences, known as antigenic drift,
may allow the virus to escape from the host’s adaptive
immunity [37]; increased infectivity and virulence; and
greater horizontal spread (that is, one individual to
another in the same species) and vertical spread (that is,
crossing of the host species, such as from pig to man,
generally due to a ‘variant’ virus). Larger diversity and
more extensive changes can be rapidly generated by
genetic reassortment, as described below.

Genomic reassortment

As the influenza genome is segmented (multiple pieces),
new strains can quickly appear by reassortment in co-
infection. Known as antigenic shift, this often leads to
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hybrid strains that are markedly different [25]. For exam-
ple, co-infection by human and swine (pig) influenza
viruses can generate reassortant viruses that will have
genomic RNA segments from the two viral species [38].
Such a hybrid can cause a major epidemic because the
human population will lack any natural immunity to it. It
has been speculated that the 1918 influenza virus, which
caused the largest influenza pandemic recorded in his-
tory, was caused by such a reassortant virus [39,40]. The
2009 Mexican swine influenza is likely a product of mul-
tiple assortments between swine, human and European
avian-like strains [41,42]. Obviously, reassortment may
result in a new combination of the HA and NA segments,
thus changing the subtype name of virus as well.
Vulnerable population groups

Influenza can be particular deadly to specific groups in
the population, such as the elderly and individuals with
diabetes or immune deficiency (such as those with
AIDS). In fact, people aged 65 years or older account
for 90% of seasonal influenza-associated deaths, even
though this group makes up only approximately 15% of
the population [1,2]. Thus, this group is in the greatest
need of prophylaxis or more intensive treatments
against influenza but, unfortunately, they are also gener-
ally less tolerant to aggressive treatments.

The brief background presented above should make it
clear that reliable prevention and treatment of influenza
is a critical need in public health. In this review, we start
by summarizing the various current and now-defunct
treatments for influenza (amantadine, oseltamivir (Tami-
flu), zanamivir (Relenza)), as there are lessons to learn
from their success and failure. We then discuss and criti-
cally review the prospective future anti-influenza treat-
ments that are at different stages of development (newer
NA inhibitors, sialidase, defensins, cathelicidin, statins,
siRNA and host proteins).

Current and past treatments

M2 ion channel inhibitors: adamantanes

The influenza viral M2 protein acts as an ion channel that
allows proton translocation through the virion envelope
(Figure 1). This leads to acidification of the viral core, its
resultant dissociation and the release of the viral NP-RNA
complex in the infected cell cytoplasm, which is essential
for viral RARP function and viral gene expression [4]. The
M2 inhibitors are adamantanes, characterized by three
condensed cyclohexane rings fused in the chair conforma-
tion. Two M2 inhibitors, amantadine and rimantadine,
were widely used against influenza but are now largely dis-
continued and replaced by NA inhibitors [43]. As one
would predict from the role of M2 in the viral life cycle,
these drugs were effective only when administered soon
after diagnosis [43]. Nonetheless, their efficacy is limited
to influenza A only, since influenza B viruses lack M2.
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Moreover, essentially all influenza strains have now devel-
oped high resistance against both amantadine and riman-
tadine. This has been attributed to their easy over-the-
counter availability in highly populated nations such as
China and Russia, and their large-scale use in the poultry
for protection against ‘chicken flu’.

Old neuraminidase inhibitors

Oseltamivir (Tamiflu)

The most popular influenza treatment regimen, devel-
oped nearly three decades after the M2 inhibitors, tar-
gets the viral NA. The NAs possess glycoside hydrolase
activity that cleaves the glycosidic linkages of neurami-
nic acids. The influenza virus uses viral HA, a virion
surface protein, to bind to sialic acid groups (Figure 2)
on cell surface glycoproteins (Figure 1) [45]. For the
progeny virions to be released from the cell, the NA
activity must cleave the sialic acid groups from the host
glycoproteins, and this is essential for viral spread and
reinfection (Figure 1). Thus, blocking the function of
NA with specific inhibitors is an effective way to treat
influenza.

The influenza NA is a classic example of rational drug
design based on the crystal structure of NA [46,47].
Currently, two NA inhibitors are used in clinical prac-
tice: oseltamivir (Tamiflu; Roche/Genentech) and zana-
mivir (Relenza; GlaxoSmithKline) (Figure 2). The 2009
HINI pandemic witnessed record sales of both drugs,
together exceeding US $4 billion, partly due to stock-
piles for fear of a forthcoming epidemic. Both drugs
bind the catalytic pocket of NA and function as compe-
titive inhibitors of NA activity.

Oseltamivir as a prodrug is sold in capsules containing
30 mg, 45 mg or 75 mg oseltamivir phosphate and also
as powder for oral suspension in water (6 mg/mL). For
treatment of influenza, the recommended dose for
adults is 75 mg, twice a day, for 5 days. The preventive
(prophylactic) dose is usually 75 mg, once a day for at
least 10 days, or for up to 6 weeks during a community
influenza outbreak. Smaller doses are recommended for
children, according to age and weight. Adverse drug
reactions may include nausea, vomiting, diarrhea,
abdominal pain, headache and neuropsychiatric events
such as self-inflicted injury and delirium (Table 1) [36].
As with many drugs, such as the M2 inhibitors [43],
oseltamivir may be less effective if used in late-stage
influenza.

Zanamivir (Relenza)

Zanamivir is more effective than oseltamivir and is sup-
plied for oral inhalation only [36]. It is sold as double-
foiled ‘blisters’ that release the drug in an inhaler when
pierced by the user. Each blister contains a powder mix-
ture of 5 mg of zanamivir and 20 mg of lactose (plus
milk proteins). The recommended dose for treatment of
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influenza in adults and pediatric patients aged 7 years
and older is 10 mg twice daily (that is, two inhalations,
one 5-mg blister per inhalation) for 5 days. For preven-
tion of influenza (prophylaxis), the recommended dose
in adults and pediatric patients 5 years and older is 10
mg once daily for 10 days, inhaled as above. Adverse
drug reactions are rarer than with oseltamivir (Table 1).
Resistance to oseltamivir and zanamivir: what they tell us
Influenza virus mutants, resistant to either drug, have been
characterized from cell culture as well as from patients
[43,48,49] and are particularly well-studied for oseltamivir.
Interestingly, resistant mutations were found not only in
the NA gene, but also in HA. It appeared that, at least in
cell culture, two HA or an HA and NA mutation can act
synergistically to increase resistance [53]. As expected, the
NA mutations were in conserved catalytic (Argl52,
Arg292) and structural (Glul19, Asp198, His274, Asn294)
residues. A few common mutations were: R152K, R292K,
E119V, D198N, H247Y (highly prevalent) and N294S [54].
Double mutations with synergistic oseltamivir resistance
phenotype have been noted as well. This includes the
E119V+I1222V double mutant, isolated from an immuno-
compromised child infected with H3N2 virus, and H247Y
+1222V, from patients infected with the HIN1 virus of the
2009 pandemic.

For future drug design and resistance expectation, it is
important to learn that the effect of these mutations is
dependent both on the NA subtype and the drug used
[55,56]. Generally, catalytic site mutants exhibit drug
resistance, but also show decreased NA activity, such
that viral infectivity, pathogenicity and transmissibility
are affected. By contrast, mutations of the structural
residues exhibit drug resistance without a significant
effect on NA functionality. Thus, in natural selection
against these drugs, the structural mutations may be
favored because they would retain viral fitness. Lastly,
the HA mutations tend to map to regions associated
with receptor binding of the HA, apparently lowering
the affinity of the HA for the cellular receptor, such that
NA is no longer required for virus release.

Readers interested in the detailed dosage of the existing
drugs (amantadine, rimantadine, oseltamivir and zanami-
vir) are encouraged to read the highly comprehensive
treatise of the Advisory Committee on Immunization
Practices from the National Center for Immunization
and Respiratory Diseases, Center for Disease Control and
Prevention, USA [57].

New and prospective future treatments
New and future neuraminidase inhibitors
Laninamivir Recently, a new NA inhibitor, laninamivir
(Inavir; Daiichi-Sankyo and Biota; Figure 2), has been
approved for use in Japan [50,51], and is currently
being developed in the US. It is a highly promising and
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Table 1 Old and new influenza drugs
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Name (major Effective against Recommended dose

Use status; adverse drug reactions

brand)

Amantadine Influenza A Capsule/tablet, syrup; 100 mg Mostly discontinued due to resistance; may be recalled in
[43] amantadine hydrochloride, twice a day.  future epidemics.

(Symadine,

Symmetrel) [43]

Oseltamivir Influenza A, B Capsule (30, 45, 75 mg) twice a day;
(Tamiflu) [48,49] powder for suspension (6 mg/mL).
Zanamivir Influenza A, B Two inhalations (5 or 10 mg each).
(Relenza) [36]

Laninamivir Influenza A, B (for Single inhalation (20 or 40 mq).
[50,51] example, HINT, H3N2)

Peramivir [52] Similar to Laninamivir

twice, 5 to 10 days.

Intravenous 600 mg once, or 300 mg

Currently in use. Transient nausea, vomiting, abdominal pain,
headache, neuropsychiatric episodes.

Currently in use. Relatively rare adverse drug reactions include
nausea, diarrhea, respiratory problems, dizziness.

Similar to oseltamivir. Approved in Japan, but not yet in the
us.

Transient nausea, vomiting, and diarrhea (similar to
oseltamivir). Approved in Japan and Korea.

Some information was obtained from manufacturers’ inserts and/or websites.

long-acting NA inhibitor that efficiently inhibits common
oseltamivir-resistant viruses, including those with the
H274Y substitution [58]. Co-crystal structure of lanina-
mivir-NA has revealed that laninamivir-binding shares
some of the same residues as oseltamivir and zanamivir
[58]. Nonetheless, the three drugs differ in their pharma-
cokinetics [52]. Laninamivir is only available for inhala-
tion, and a single inhalation has been shown to be as
effective as repeated doses of oseltamivir or zanamivir
[50], likely due to its long persistence in the lung. The
single use regimen is expected to promote improved
patient compliance and convenience [51].

Favipiravir The second new investigational drug against
NA is T-705 (favipiravir; 6-fluoro-3-hydroxy-2-pyrazine-
carboxamide; Figure 2) [59] that has shown antiviral
activity against seasonal influenza viruses as well as osel-
tamivir-sensitive or -resistant highly pathogenic H5N1
viruses [60]. Moreover, its active form is a ribofuranosyl
triphosphate derivative that mimics purines or purine
nucleosides and inhibits the viral RARP but does not inhi-
bit human polymerases [59]. Thus, favipiravir shows
excellent promise for the treatment of patients with the
highly pathogenic H5N1 influenza. The National Insti-
tutes of Health of the US is currently conducting a Phase
II, randomized, double-blind, placebo-controlled, multi-
center (in 235 study locations) study evaluating the effi-
cacy and safety of favipiravir in adult patients with
uncomplicated influenza (ClinicalTrials.gov identifier
NCT01068912; sponsor: FujiFilm Pharmaceuticals USA,
Inc.). A 5-day regimen is being tested with low-dose
(1000 mg favipiravir twice for 1 day, followed by 400 mg
favipiravir twice a day for 4 days) as well as high-dose
favipiravir (1200 mg favipiravir twice for 1 day, followed
by 800 mg favipiravir twice a day for 4 days). The results
are expected to be available in late 2012 or early 2013.
Peramivir The third new compound in the NA-inhibitor
category is peramivir (Biocryst Pharmaceuticals; Figure 2).

It is the only intravenous (IV) option used for the treat-
ment of certain hospitalized patients with known or sus-
pected 2009 pandemic HIN1 influenza, but its approval
by the US Food and Drug Administration expired soon
after the pandemic. A phase III clinical trial of parenteral
(IV) peramivir, conducted on 230 patients in 110 study
locations and sponsored by the US Department of Health
and Human Services, was recently completed (Clinical-
Trials.gov identifier NCT00957996; sponsor: BioCryst
Pharmaceuticals). It tested the safety and tolerability of
peramivir administered either as a once-daily infusion of
600 mg or a twice-daily infusion of 300 mg to adult and
adolescent patients hospitalized with confirmed or sus-
pected influenza infection. Both dose regimens of IV pera-
mivir were found to be safe and well-tolerated. Another
phase III study of IV peramivir has also been initiated and
continues at the time of this writing (ClinicalTrials.gov
identifier NCT00958776; sponsor: BioCryst Pharmaceuti-
cals). Because of its intravenous applicability, peramivir is
particularly useful when a patient has developed resistance
to oseltamivir and is unable to inhale zanamivir (for exam-
ple, patients with asthma), the two major anti-influenza
drugs. Peramivir is already being sold in Japan under the
trade name Rapiacta, and in South Korea under the name
Peramiflu.

The promise of such new generation NA inhibitors sug-
gests that NA may continue to provide a rational target
for newer inhibitors in the future, effective against viruses
that will develop resistance to the older inhibitors [46].

Hemagglutinin inhibitors

EB peptide

In an interesting report [61], a 20-amino-acid peptide
(RRKKAAVALLPAVLLALLAP), derived from the signal
sequence of fibroblast growth factor 4, specifically bound
to the influenza viral HA protein (Figure 1) and exhibited
broad-spectrum antiviral activity against influenza viruses
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including H5N1. Named EB for Entry Blocker, the pep-
tide was also protective when administered post-infec-
tion, suggesting that it prevented reinfection, which
underscored its therapeutic potential.

Peptide NDFRSKT

In a complementary approach [62], a heptapeptide phage
display library was biopanned against purified avian influ-
enza virions of subtype HON2. Multiple rounds of pan-
ning and antiviral screening led to the identification of
the peptide NDFRSKT with strong antiviral properties.
The peptide inhibited the hemagglutination activity of
the viruses but not the NA and hemolytic activities.
Further studies confirmed that the peptide directly inter-
acted with the HA protein. The therapeutic status of the
peptide remains unknown.

Fludase, a neuraminidase mimic

Fludase (DAS181) is a recombinant chimeric enzyme in
which a fungal sialidase catalytic domain is fused to a cell
surface-anchoring domain [63,64]. Enzymatically, it func-
tions essentially like the viral NA and destroys the host
cell surface sialic acid receptors of the virus (Figure 1).
Thus, it differs from the NA inhibitors in two respects: it
is a protein, not a small compound; and it targets the
host cell rather than the virus itself. In preclinical studies,
Fludase inhibited both human and avian lethal influenza
viruses [63,64]. Fludase is designed and developed by
NexBio (http://www.drugdevelopment-technology.com/
projects/fludase); however, its future development by the
company remains uncertain.

Anti-inflammatory drugs

With the recognition that the body’s hyperactive inflam-
matory response is a root cause of organismic and sys-
temic damage in many pathological states, efforts at
quelling inflammation have received pharmaceutical atten-
tion [65-67]. Notable direct and indirect anti-inflammatory
regimens, tested in various infections, include corticoster-
oids, aspirin (a common non-steroidal anti-inflammatory
drug), monoclonal antibodies, antagonists of cytokines and
chemokines, statins and sphingosine analogs. They might
be particularly helpful in pandemic events, which, as men-
tioned before, are characterized by exaggerated synthesis
of proinflammatory cytokines, known as a cytokine storm
[68]. Although anti-inflammatory drugs have produced
mixed, and sometimes conflicting, results in patients with
influenza, a few are worth mentioning here.

Statins

Statins inhibit cellular 3-hydroxy-3-methylglutaryl-coen-
zyme A (HMG-CoA reductase), an enzyme essential for
cholesterol biosynthesis in the liver, and are extensively pre-
scribed to treat hypercholesterolemia [69]. Statins are rela-
tively safe with rare incidents of myositis, myopathy and
neuropathy. Thanks to the generally accepted correlation of
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high serum cholesterol levels and predisposition to athero-
sclerosis, multiple statins are currently blockbuster phar-
maceuticals that include: atorvastatin (Figure 2) (Lipitor by
Pfizer), lovastatin (Mevacor by Merck & Co.), and simvas-
tatin (Zocor by Merck & Co.), as well as generic varieties.
In relatively recent approaches, statins have been tested
in influenza, based on the premise that they might reduce
the mortality and morbidity caused by the cytokine storm
[30,65,66,70,71]. However, these studies have generated
contradictory claims. In one retrospective study [72], a
database of 3,043 adults in the US hospitalized with
laboratory-confirmed influenza during the 2007 to 2008
influenza season was analyzed. Of these patients, 1,013
received statins and 151 died within 30 days of their influ-
enza test. The analysis revealed a positive correlation of
statin use with reduced mortality. By contrast, when 1,520
patients in the UK [73] with confirmed 2009 pandemic
influenza A (HIN1) infection were surveyed for pre-
admission statin use and in-hospital severity, no significant
correlation could be found. Another recent study in Spain
[74] examined the use of corticosteroids, macrolides and
statins among 197 patients with 2009 pandemic influenza
HIN1, who also had complications from pneumonia, sug-
gesting a role of the inflammatory response. Unfortu-
nately, none of these immunomodulatory therapies was
found to be associated with a lower risk for developing
severe disease. The apparent variability among some of
these studies may be due to a number of factors [75], such
as subtle differences in the viral genome sequence between
the two pandemics, the dose and frequency of statin use,
and environmental factors. Clearly, a more detailed,
focused and controlled clinical trial is needed to evaluate
the benefit of statin use, perhaps in conjunction with an
antiviral agent such as oseltamivir or zanamivir.
Sphingosine mimics
Sphingolipids are a family of lipid mediators, of which
sphingosine and its phosphate (sphingosine 1-phosphate
or S1P) have been recognized as modulators of diverse
cellular activities. The sphingosine analog family is a
group of recent immunosuppressants with high therapeu-
tic potential for influenza. In the body, these compounds
mimic natural sphingosine and are first phosphorylated by
sphingosine kinase [76,77]. The phosphoform then acts as
an agonist of multiple types of sphingosine receptors,
which leads to lymphopenia through the sequestration of
lymphocytes in the lymph nodes, resulting in immunosup-
pression [76,77]. Fingolimod (FTY720) (Figure 2), an early
member of this family (trade name Gilenya, from Novar-
tis), is derived from a fungal metabolite and currently
approved for treatment of autoimmune conditions, multi-
ple sclerosis, cardiac failure and arrhythmia. Later, removal
of a hydroxyl group in FTY720 generated AAL-4, which
was much more rapidly phosphorylated in humans,
improving its efficiency [78]. A series of studies have now
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shown that AAL-4 provides significant protection against
the cytokine storm in pathogenic influenza by limiting pul-
monary injury [79,80]. In a representative study [80], mice
were intranasally infected with the pathogenic pandemic
A/Wisconsin/WSLH34939/09 influenza virus and an hour
later treated with AAL-R (0.2 mg/kg in 100 puL water
intratracheally) or 100 pL water alone. These animals with
compared with those receiving 5 mg/kg (also in water) of
oseltamivir (Tamiflu) by gavage. The results showed that
AAL-R administration alone significantly lengthened the
survival time of the animals (82%) compared with those
that received water. As expected, oseltamivir treatment
alone significantly increased the number of survivors
(50%) compared with just water (21%); however, protec-
tion was significantly less than that from AAL-R treatment
(50% versus 82%). Interestingly, a combination of AAL-R
and oseltamivir resulted in 96% survival, which is greater
than either drug alone. Hence, a dual drug cocktail of a
direct viral function inhibitor and a host immune response
inhibitor may be a promising approach in the treatment of
influenza.

Nuclear factor-kappaB inhibitors

NF-xB is a transcription factor of many genes of the cel-
lular innate immune pathway and its activation underlies
a variety of antiviral as well as inflammatory responses
that range from septic shock to cancer. In fact, NF-xB
has been considered a major target of immunomodula-
tory and anti-inflammatory therapy [81,82]. In its inter-
esting dual role, NF-xB is not only a critical contributor
of cytokines and interferon synthesis in influenza infec-
tion, but also essential for the growth of the virus itself
[83-87]. Although the exact mechanism for the latter
remains unclear, the balance must be tightly regulated, as
the influenza viral NS1 protein actually inhibits NF-xB
[88]. Clearly, even after the inhibition, enough active NF-
kB persists to promote viral growth and the inflamma-
tory response. Thus, inhibitors of NF-xB may have a
two-pronged beneficial effect in influenza: they will inhi-
bit the virus directly and will also moderate the systemic
inflammation. This has been shown in cell culture and
mice [84-86], but specific and controlled studies in
patients with influenza still need to be done. Nonetheless,
the prospects of an anti-inflammatory therapy of influ-
enza are real, because some anti-NF-xB drugs, such as
acetyl salicylate (aspirin) are routinely sold in stores with-
out prescription and widely used by the general public for
many years without major side effects.

Antimicrobial peptides and proteins

A variety of animal and plant species produce small
antimicrobial peptides and larger proteins that exhibit
innate immune functions against an increasing number
of pathogens. The two major families of antimicrobial
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peptides are defensins and cathelicidins (Figure 3) [89],
whereas the collectins are larger proteins. Although
antimicrobial peptides are diverse, they are generally
cationic and amphipathic, which allows them to interact
with and disrupt microbial membranes. In addition, they
modulate the immune system by inducing the produc-
tion of proinflammatory cytokines, act as chemokines
for neutrophils and enhance phagocytosis of macro-
phages [89]. Recent studies have revealed antiviral -
including anti-influenza - activities of some of these
molecules, some of which are presented here.

Defensins

The defensins typically contain six Cys residues, forming
three intramolecular disulfide bonds that regulate their
structure and function (Figure 3) [89]. They are

siRNA

PA-2087: GCAAUUGAGGAGUGCCUGAJTAT

dTdTCGUUAACUCCUCACGGACU

PB1-2257: GAUCUGUUCCACCAUUGAAJTAT
dTdTCUAGACAAGGUGGUAACUU

NP-1496: GGAUCUUAUUUCUUCGGAGATAT

dTdTCCUAGAAUAAAGAAGCCUC

Defensin

a-Defensin-1 (HNP-1):
ACYCRIPACIAGERRYGTCIYQGRLWAFCC

0-Defensin, RC100 (linear precursor):
GICRCICGRGICRCICGR

Cathelicidin

LL-37:
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES

Figure 3 Sequences of selected anti-influenza macromolecules.
Three representative classes are shown (siRNA, defensin and
cathelicidin). Experimentally successful siRNA against influenza PA,
PB1 and NP genes are shown in the upper box [90]. For each siRNA,
the location of the sequence in the original gene is indicated by
nucleotide number; thus, PA-2087 indicates an siRNA in which the
first nucleotide at position 2087 of the PA gene. The upper strand is
written 5'to 3’; the two deoxythymidine (dT) at the 3’-end are
presumed to stabilize the siRNA [91]. The lower box shows the 37-
mer peptide LL-37, written in single letter codes [92-94]. In the
defensin family, note the abundance of Arg and Cys residues that
are important for function [89].
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subdivided into a-, B- and 0-defensins, depending on
their molecular weight and location of the Cys-Cys
bonds. A number of defensins inhibited influenza virus
growth, but the mechanism remains a matter of debate.

Humans have six o-defensins, of which a-defensin-1
(also known as human neutrophil peptide-1, HNP-1) and
o-defensin-2 (HNP-2) were shown to increase neutrophil
uptake of influenza virus [95,96]. The -defensins had a
significantly lower activity in this particular mechanism. In
another study, HNP-1 (Figure 3) exhibited anti-influenza
activity in epithelial cell culture as well, inhibiting viral
RNA and protein synthesis [97]. Pretreatment of the cells
with HNP-1 also inhibited viral replication, showing that
the inhibition was due to modulation of cellular pathways.
Protein kinase C was shown to be inhibited by HNP-1
treatment, suggesting the involvement of the protein
kinase C pathway in nonimmune cells.

The 6-defensins, also called retrocyclins, are uniquely
circular 18-residue peptides formed by post-translational
joining of the N- and C-termini of two nonapeptides, and
they also occur exclusively in primates [89,96]. The
human 0-defensin genes are intriguing exceptions as they
are pseudogenes harboring mutations that prevent the
production of 0-defensin proteins. Studies of nonhuman
primate 0-defensins have revealed that they are lectins
with glycoprotein-binding properties that can inhibit
fusion of HIV with the host cell, thus suggesting a novel
antiviral regimen [98-101]. Human B-defensin 3, another
lectin, also inhibited HA-mediated influenza viral fusion in
a similar way [101]. Recently, retrocyclin-1 (Figure 3) and
its various synthetic analogs, some with structural varia-
tions (for example, hapivirins, diprovirins) were tested
against influenza virus in human cell culture and shown to
block infection at low micromolar concentrations
[99,101,102]. The success of synthetic peptides has opened
the possibility that further engineering of the defensin
sequences may lead to more optimized anti-influenza effi-
cacy and pharmacological properties [100,103]. In an
interesting complementary approach, aminoglycosides
(amikacin 40 pg/mL; gentamicin 5 pg/mL; tobramycin 10
pg/mL), which are known to promote suppression of ter-
mination by codon-misreading [104], were used to pro-
duce retrocyclin from the endogenous human genes, and
this also resulted in resistance to HIV-1 [103]. Although
aminoglycosides are sometimes prescribed to fight serious
bacterial infections, nephrotoxicity and ototoxicity are
relatively frequent [105]. It remains to be seen whether an
optimized dose will generate enough retrocyclin to block
influenza viral fusion without causing unacceptable toxic
effects in the patient with influenza.

A few defensin mimetics are currently being developed
by PolyMedix (Radnor, PA, USA) and are at various
stages of preclinical and clinical trials, but apparently
none is being tested against influenza.
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Cathelicidins: LL-37

In humans, the cationic antimicrobial protein hCAP18 is
cleaved between Alal03 and LeulO4 to generate LL-37, a
37-residue peptide with two tandem Leu residues at the
amino terminus (Figure 3). Recent studies are revealing
these peptides are not just antibacterial molecules but
have a variety of innate immune functions [92,93]. LL-37,
which is expressed in a number of cell types including
epithelial, was recently shown to protect mice against
influenza [94]. Using a lethal dose of the two different
influenza A strains (A/PR/8/34 HIN1 and A/Udorn/307/
72 H3N2), significantly higher survival and decreased
weight loss was observed in LL-37-treated animals, which
compared favorably with the Relenza-treated positive con-
trols. Although a part of the better prognosis could be due
to suppression of the inflammatory response by LL-37, the
accompanying lower pulmonary viral titer, the short win-
dow of the acute infection, and the reproducibility of the
viral inhibition in cell culture all point to a direct antiviral
role of LL-37, the mechanism of which remains to be
determined [94]. The LL-37 in these mouse experiments
was administered with a respiratory nebulizer at a concen-
tration of 500 pg per milliliter of saline and compared
with the same concentration of Relenza [94]. At least in
cell culture, the virus-inhibitory concentration of LL-37
approximated its natural concentration in the human lung
[94]. LL-37, promising as it is, awaits further development
for influenza treatment. It also remains to be seen whether
other such antimicrobial peptides have antiviral, and speci-
fically anti-influenza, properties. If so, this family may con-
stitute an exciting and novel regimen for influenza
treatment in the future.

Collectins

The collectins belong to the superfamily of collagen-
containing C-type lectins (hence their name), and act as
pattern recognition receptors for pathogenic molecules
[106,107]. Better known members include the mannan-
binding lectin and the surfactant proteins A and D.
There is a large body of literature documenting an
innate antiviral role of these lectins, in which they neu-
tralize viral infectivity by binding to viral fusion glyco-
proteins, such as influenza viral HA and NA proteins;
however, their contributions in opsonizing viral antigens
and triggering neutrophil oxidative respiratory burst and
an inflammatory response suggest that their pharmaco-
logical potential must await a more detailed analysis of
these diverse roles [96,108-112].

Short interfering RNA

In all metazoan cells, double-stranded RNA (dsRNA)
triggers a cascade of biochemical reactions, collectively
named RNA interference (RNAi). The net result of
RNAI is to silence or degrade any RNA that is comple-
mentary to either strand of the dsRNA. If the target is
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mRNA, the net result is abrogation of the corresponding
protein synthesis, resulting in ‘knockdown’ of the gene (as
opposed to ‘knockout’, in which the DNA gene itself is
deleted). Of relevance to research scientists and clinicians,
the RNAI response can be triggered by synthetic dSRNA
18 to 22 base-pairs long, called siRNA in both cell culture
[91,113] and in animals [114]. Historically, the first study
demonstrating the antiviral use of appropriately designed
synthetic siRNA targeted another respiratory virus, namely
respiratory syncytial virus, a lower respiratory tract patho-
gen of paramount importance in pediatrics [113]. Anti-
influenza siRNAs followed soon after [90]. For both
viruses, intranasally administered siRNA was promptly
delivered to the lungs and showed significant efficacy and
protection of animals [115-118]. For respiratory syncytial
virus, an inhaler-based application was also found to be
useful in the mouse model, which should work for influ-
enza as well [114,117].

The siRNAs in general enjoy several advantages over
organic chemical drugs (such as Tamiflu and Relenza)
[117]. First, the siRNA ‘drugs’ can be rapidly synthesized
and scaled up for production. Second, in the event of
viral resistance to one siRNA, a different siRNA target-
ing another viral sequence can be used. Third, regard-
less of sequence, all siRNAs use the same synthetic
chemistry and hence the same manufacturing process.
Finally, unlike many pharmacologically active organic
compounds, siRNAs are water-soluble. Nonetheless, a
clinically viable anti-influenza siRNA must meet a num-
ber of criteria, including specific tissue delivery (lung
and the adjoining airspace), low toxicity and immune
reaction, and pharmacokinetic stability.

A number of siRNA sequences, targeting various
genes of influenza virus (Figure 3), have been tested
over the last few years [90,115,118-120]. Recently, with
better knowledge of siRNA design parameters and avail-
ability of appropriate bioinformatic algorithms, a more
comprehensive siRNA repertoire covering a larger num-
ber of influenza viral genes in a variety of strains and
isolates has been published [121-123]. Although no
siRNA is yet commercially available for influenza treat-
ment, Siranomics, Inc. (Gaithersburg, MD, USA) is
developing the proprietary STP702 (FluQuit), a cocktail
of siRNA designed to inhibit conserved regions in HIN1
and H5NT1 strains of the influenza virus [124]. The ulti-
mate goal would be to develop STP702 with demon-
strated activity against multiple influenza A strains
including HIN1, H5N1, H3N2, H7N2 and H9N2 [124].

Drugs targeting the ‘host interactome’ of influenza

The limited number of influenza genes that can be targeted
and the problems of resistance have made the targeting of
host genes that are necessary for virus growth, nicknamed
host interactome [125], an attractive new paradigm. It is
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also built on the premise that short-term inhibition of
these host functions to treat an acute infection would not
have major side effects. The concept of pharmacologically
relevant genes, commonly called druggable genes, already
exists. For example, essentially all successful cancer che-
motherapeutic drugs target host functions. The anti-HIV
drug, maraviroc, targets the viral co-receptor C-C chemo-
kine receptor 5, and thereby prevents vial entry [126].

In the past few years, a number of comprehensive, gen-
ome-wide studies have identified host genes essential for
virus growth, primarily through the use of siRNA
libraries against the host genome and innovative, high-
throughput reporter viral assays. In influenza, at least five
such studies were conducted that used diverse readouts
in different cell types, multiple virus strains and siRNA
libraries targeting about 22,000 host genes [127-131].
Each screen identified a few hundred hits; intriguingly,
however, not one hit was common to all five screens, per-
haps underscoring the differences in their methodology
and assay variables. Nonetheless, analysis of the hits
revealed genes common to subsets of screens; for exam-
ple, 85 genes were common to two or more of the
screens, 72 genes were common to two of the five
screens, 8 were common to three screens, and 5 were
common to four screens [125]. These five genes code for:
archain 1, ATPase, H" transporting, lysosomal accessory
protein 1, coatamer protein complex, o subunit, coata-
mer protein complex, y subunit, and nuclear RNA export
factor 1. The functional categories, over-represented in
the 85 cellular genes mentioned above, include ribosomal
proteins, COPI (coat protein) vesicles, ATPase complex,
spliceosomal proteins, nuclear envelope and kinase/sig-
naling proteins, which underscores the many areas of the
host that the virus co-opts [125,132]. Of these, nearly 50
are considered druggable, according to the Integrated
Druggable Genome Database available from Sophic
(http://www.sophicalliance.com/) [125,133], many of
which can be pursued as targets of anti-influenza drug
discovery. A few leads have been already confirmed by
gene-specific analysis [125,134,135]. For example, an
inhibitor (KN93; Figure 2) of the Ca*?/calmodulin-
dependent kinase (CAMK2B), a gene identified in one
genome-wide screen [131], inhibited influenza virus
replication. Similarly, an inhibitor (TG003) of the CD-
like kinase 1 that was found from another screen [130]
also inhibited influenza virus growth. The third example
is of p27, also found in the same screen [130]; the p27
knockout mice were found to be not only viable but also
substantially resistant to virus growth, suggesting that
p27 is a viable drug target.

In a separate recent screen, host genes specifically
important for influenza viral polymerase (RdRP) function
were identified, which are also potential candidates for
antiviral drug development [136]. A chemical biology
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screen of 200,000 synthetic compounds recently identified
naphthalimides as an antiviral chemical class that activated
a new host defense factor, REDDI, which in turn inhibited
influenza NS1 and viral replication [137]. Thus, activation
of REDD], rather than inhibition, can be developed as a
new anti-influenza regimen.

Conclusion

The current influenza treatments (Tamiflu, Relenza) tar-
get the viral NA and are quite effective. However, history
has taught us that the virus mutates rapidly and becomes
resistant to antivirals, as exemplified by the discontinua-
tion of the once-effective adamantanes, the viral M2 inhi-
bitor family. Viral resistance against the NA inhibitors
has in fact begun to emerge recently, and their continu-
ous use may lead to wide-spread selection of such
mutants, making the population vulnerable to a drug-
resistant epidemic. It is clearly important to have new
antivirals in our anti-influenza arsenal. Based on research
efforts, there appears to be five promising new anti-influ-
enza regimens. The first of these is new compounds
screened against old and new viral targets, such as NA,
HA, the N protein [138] and RdRP subunits, or even the
M2 ion channel [139]. Recall that NS1 is a major anti-
immune function of the virus, and drug development
against it has recently begun [140], with the identification
of one inhibitory compound, NSC125044 (Figure 2) that
reduced virus growth to virtually the same extent as an
NS1-deleted virus. Clearly, these studies are promising,
and need to be expanded. The second possible regime
comprises siRNA, provided that the recognized hurdles
of siRNA delivery, stability and specificity are resolved to
a clinically acceptable level [141,142]. Third are new
treatments that target any of the recently identified drug-
gable host factors, essential for virus replication. Fourth,
multiple drugs cocktail, targeting two viral functions
[143] or one viral and one cellular function can be devel-
oped, the latter including inflammatory players (for
example, NF-xB, sphingosine, chemokines) commonly
activated in influenza. Finally the fifth possibility for new
anti-influenza regimens is naturally occurring innate
immune peptides, such as defensins and cathelicidins,
that can be further optimized for a proper balance
between their anti-influenza and signaling effects.
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