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Abstract

Background: Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal
neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly
represent simple delays or non-completion of typical childhood developmental trajectories is evaluated.

Discussion: A comprehensive review of the literature indicates that, with regard to the four phenotypes of
(1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain
connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the
differences between autistic individuals and typically developing individuals closely parallel the differences between
younger and older children.

Summary: The results of this study are concordant with a model of ‘developmental heterochrony’, and suggest
that evolutionary extension of child development along the human lineage has potentiated and structured genetic
risk for autism and the expression of autistic perception, cognition and behavior.
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Background
The autism spectrum is a set of neurodevelopmental
conditions characterized and defined by deficits in lan-
guage and social communication, combined with high
expression of restricted interests and repetitive behavior
[1,2]. Autism is highly heritable [3], and etiologically
heterogeneous, such that a broad range of single-gene,
genomic, polygenic and environmental variation has been
shown to contribute to the development of a similar, con-
vergent suite of overlapping phenotypes [2,4].
The causes of autism have been studied predominantly

using genetic, neurological and psychological concep-
tualizations and approaches [1,2,4]. The former two ap-
proaches have focused on proximate, molecular-genetic,
neurodevelopmental, and synaptic causes of autism con-
sidered in terms of dysfunctionality and deficits. By
contrast, the latter approach commonly involves con-
sideration of both proximate causes and theoretical psy-
chological models of autism-related phenotypes, with
autism considered in terms of cognitive or perceptual
‘styles’ or ‘types’, such as weak central coherence [5], high
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systemizing relative to empathizing [6], or enhanced per-
ceptual function [7,8]. Such styles are atypical but re-
present extreme manifestations of normally-distributed
variation [9], and comprise both relative deficits (mainly
in social cognition) and relative strengths (mainly in
non-social perception, cognition and task performance).
Evolutionary approaches to the study of autism have

been largely restricted to accounts of how phenotypes
subject to central deficits in autism, especially language
and joint attention, represent uniquely human-evolved or
human-elaborated phenotypes (see for example [10,11]).
As such, recent human evolutionary trajectories of in-
creasingly complex social cognition have amplified the
genetic and environmentally-based scope for losses and
alterations of function that differentially impact human
social phenotypes, and potentiate risk of autism-related
deficits and changes in cognitive functions. This concep-
tualization of autism, in terms of ultimate, evolutionary
causes, has been useful in motivating studies that compare
human evolutionary molecular-genetic and phenotypic
changes with alterations that typify neurodevelopmental
psychiatric conditions, and in comparing autism with
other neurodevelopmental conditions such as schizophre-
nia [11,12]. However, thus far it has provided limited
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direct utility in proximately-based autism research and
development of therapies.
Recent human evolution has involved not just the evo-

lution of enhanced general and social cognition, but also
large-scale changes to life history, prominently expressed
in extension of childhood, defined as the period from
birth to sexual maturity and completion of physical
growth [13]. Evolutionary expansion of the human child-
hood stage, and human adult phenotypes at the endpoint
of childhood, have usually been described in terms of
neoteny: the retention of juvenile characteristics in
adults due to evolutionary changes in rates and timing
of development [14,15]. In particular, human physical,
neurological and psychological development processes,
and their molecular developmental underpinnings, have
evolved to take a considerably longer time, presumably
through an extended series of genetically-based, hetero-
chronic changes along the human lineage.
As for social cognition considered as a set of adult

phenotypes, evolutionary changes generate scope for
genetic, epigenetic and environmental alterations in the
timing and rates of cognitive development that manifest as
neurodevelopmentally-based psychiatric conditions [15,16].
In particular, under this evolutionary-developmental ru-
bric, autism may commonly involve developmental
heterochronic shifts in the timing and rates of neuro-
logical and psychological development. As such, the
suite of phenotypic alterations that characterize autism
spectrum conditions would be expected to involve, in
part, simple retention of relatively juvenile traits, as ex-
tremes of typical temporal sequences of development.
The idea of autism as involving reduced developmental
rates has been considered previously in general diagnos-
tic terms, but it has yet to be comprehensively evaluated
using data from a suite of autism-related phenotypes, to
compare ‘autistic’ traits with those of typical child de-
velopment in an explicitly temporal framework. More-
over, such developmental views as do exist center on
deficits and dysfunction, rather than on cognitive differ-
ences between younger and older individuals that may
be more or less conditionally adaptive as opposed to
involving constrained sequences from simpler to more
complex [17].
In this article, I evaluate the hypothesis that autism-

related traits represent not simply expressions of qualita-
tively-atypical or ‘pathological’ development, but instead,
relatively juvenile phenotypes that have been retained
and expressed for longer than is usual in children under-
going typical development. In this context, rather than
concentrate on characteristics of autism that represent
deficits or absences, I focus on qualitative differences
and similarities between autistic individuals and neuro-
typical individuals of different ages in perception, cog-
nition and behavior. The primary goal of this article is
thus to determine the extent to which autism spectrum
phenotypes can be regarded as relatively straightforward
consequences of shifts in the timing and rates of neuro-
logical and psychological development. To the degree
that such developmental heterochrony indeed character-
izes the autism spectrum, research into causes and the-
rapies for autism might usefully focus more closely on
how genetic and environmental variation mediate the
rates and timing of child developmental trajectories and
milestones, and causes of variability among children in
developmentally-structured cognitive styles. A develop-
mental heterochronic structure to autism also implicates
recent evolutionary changes along the human lineage in
the potentiation and genetic structuring of autistic per-
ception, cognition, and behavior, and risk for autism
spectrum conditions.

Discussion
Autism and age-related childhood phenotypes
A set of autistic and autism-related phenotypes, derived
from models and reviews of the major features, causes,
and correlates of autism, was ascertained based on the
availability of (1) reasonably well replicated data showing
differences between individuals with autism spectrum
phenotypes and typically developing individuals, and (2)
data that substantiates differences in these same pheno-
types between relatively young, and relatively old, typic-
ally developing individuals, usually children. The Web of
Science and PubMed databases were systematically
searched for articles that met these criteria, using a
range of related search terms and cited papers within sa-
lient articles. Recent review papers were used for espe-
cially well-studied or well-documented topics. For topics
where directly comparable data were available, patterns
observed for autism spectrum conditions were contras-
ted with those found in the other most thoroughly stu-
died neurodevelopmental condition, schizophrenia, to
evaluate patterns of similarity and differences. This art-
icle is thus not a systematic review per se, but takes a
comprehensive approach to surveying the literature with
regard to conducting robust tests of the hypothesis
proposed.
Four sets of phenotypes were chosen for detailed con-

sideration based on the criteria described above: (1) re-
stricted interests and repetitive behavior, (2) short-range
and long-range structural and functional brain connect-
ivity, (3) global and local visual perception and informa-
tion processing, and (4) the presence of absolute pitch in
auditory perception and processing.

Restricted interests and repetitive behavior
Restricted interests and repetitive behavior represent
one of the core diagnostic sets of features for the autism
spectrum. This set of behaviors, which follows directly
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from Kanner’s [18] original descriptions, is defined in
The Diagnostic and Statistical Manual of Mental Disor-
ders, fifth edition (DSM-5) as involving some combi-
nation of stereotyped or repetitive speech or movement,
excessive following of routines and resistance to change,
highly intense and focused interests, especially high or
low sensory reactivity, and fine motor deficits.
This set of behaviors is also characteristic of typical

early child development, and is considered to exhibit im-
portant stage-specific adaptive functions [19-22]. Thus,
Evans et al. [19], drawing on the foundational work
of Gesell et al. [23], described how typically developing
2.5 to 3-year-old children exhibit ‘strong preference for
sameness in the environment, repetitive ritualized be-
havior, rigid likes and dislikes, and sometimes acute
sensory perceptual awareness of minute details or imper-
fections in toys or clothes’, as well as ‘just right’ behavior
that includes ‘attention to detail’, ‘heightened awareness
of how certain clothes feel’, and ‘ordering of objects in
symmetrical patterns’, all of which are notably prevalent
among children diagnosed with autism. Such behaviors
were reported as highest at ages 2 to 4, with declines
thereafter. Glenn et al. [21] studied ‘routinized and
compulsive-like’ behaviors, also in typically developing
children, and found a significant and linear decline be-
tween ages 2 and 11.
In the developmental psychology literature addressing

autism spectrum conditions, restrictive interests and re-
petitive behavior, especially motor stereotypies, have
traditionally been considered as ‘immature’ behaviors
that are normal components of early development but in
the autism spectrum have been maintained for longer
than normal [22]. Moreover, in children diagnosed with
autism spectrum disorder, little atypicality is observed in
restrictive interests and repetitive behavior prior to ages
2 or 3 [22].
These findings are in clear agreement with a develop-

mental heterochronic model for autism with regard to
restricted interests and repetitive behavior. The causes
of the delays per se in developmental attenuation of such
behaviors have yet to be investigated; restricted interests
and repetitive behavior are found most prominently in
autistic individuals with relatively low intellectual and
language capacity (although restricted interests are also
common among autistic individuals with higher intellec-
tual capacity) [22], and higher levels of their expression
are correlated with better performance on the embedded
figures test, a relative visuospatial strength found in aut-
ism [24,25]. However, the strength of the relationship of
restricted interests and repetitive behavior with social
and language deficits, the other main diagnostic set of
features for autism, is moderate to low [26]. To the ex-
tent that restricted interests and repetitive behavior ex-
hibit normative adaptive behavioral functions, such as
reducing anxiety, decreasing arousal, simplifying com-
plex situations, and fostering a sense of control [20,21],
extension of their age-dependent expression may reflect
extension of the conditions favoring such behavior. In
this context, higher levels of restricted interests and re-
petitive behavior in autism may be conceptualized in
terms of prolonged expression of adaptive, cognitive-
behavioral defensive or compensatory functions [27], ra-
ther than pathology.
Short-range and long-range structural and functional
brain connectivity
Relatively high levels of short-range functional and struc-
tural brain connectivity, concomitant with low levels
of long-range connectivity, represent one of the best-
replicated and best-supported findings in the study of
autism, being reported for a wide range of data sources
(magnetic resonance imaging (MRI), diffusion tensor
imaging, and electroencephalography (EEG)), analytic me-
thods, and independent sample populations (see for
example [28-35]). The causes of relatively reduced long-
range connectivity in autism (Figure 1) remain the subject
of intense study, but appear to include, among other
causes, larger overall brain size, especially in early child-
hood [28,36], alterations to cortical minicolumns [37], in-
creased dendritic spine density [38], and genetically-based
reductions in development of long-range connections
[39]. By contrast, increased relative long-range functional
connectivity, due to excessive pruning of short-range con-
nections, has been described in schizophrenia [40-43] and
auditory verbal hallucinations [44] (Figure 1).
Typical development from infancy to early adulthood

involves a robustly characterized shift from relatively
short-range to long-range connectivity, in association
with early overproduction of neurons and synapses, dif-
ferential pruning of relatively short-range connections,
and increasing myelinization [45-48] (Figure 1). The
rates and timing of cortical growth and pruning have
been associated with intellectual capacity [49], but con-
nectivity patterns have yet to be systematically evaluated
with regard to variation among typically developing indi-
viduals in social and language development, or other
relatively specific autism-related phenotypes. In the con-
text of evolved risk for autism and its association with
larger brain size, it is useful to note that larger brains ex-
hibit relatively low levels of long-range, compared to
short-range, connectivity [50,51]. As such, the recent
tripling of human brain size has presumably involved se-
lection for developmental-genetic changes that promote
increases in relative long-range connectivity [52], which
would increase the genetically and epigenetically-based
scope for autism spectrum phenotypes, especially in sets
of individuals with larger brains, such as males.
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Figure 1 A simple depiction of the developmental heterochronic model, with regard to changes in short-range relative to long-range
structural and functional brain connectivity. In this specific model, autism involves a slower rate of pruning for short-range connections, and
schizophrenia involves a faster rate. Neurodevelopmental variation salient to this process may also involve cortical volume and early short-range
connectivity that are greater in autism than in typically developing individuals, and reduced in schizophrenia, which will increase the magnitude
of the observed variation in developmental trajectories. Frame thickness is shown as proportional to relative degree of short- range connectivity,
and arrow size corresponds to rates of differentiation.
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Findings on connectivity in autism, and in typical devel-
opment, concord with a model of heterochronic alterations,
with biases towards shorter-range connectivity in autism
representing, at least in part, the result of slower or incom-
plete connectivity-pattern maturation [30]. In principle,
behavioral, cognitive and pharmacological therapies that
specifically promote the development of relatively longer-
range structural and functional cortical connectivity, espe-
cially involving default mode and other ‘social brain’ re-
gions, represent productive avenues for future research.

Local and global perception and processing
The ‘weak central coherence’ theory developed by
Francesca Happé posits that autism represents a cogni-
tive ‘style’ characterized by relatively underdeveloped top-
down, context-dependent, gestalt, integrated big-picture
perception and cognition, and overdevelopment of de-
tail-focused, context-independent, locally-oriented, parts-
centered processes [5,53,54]. A central prediction of this
theory is a bias in the autism spectrum towards perception
and processing of local, relative to global, features of envir-
onmental stimuli, as epitomized, for example, by higher
performance of autistic individuals, or typically developing
individuals with more autism-related psychological traits,
on the embedded figures test [55-58].
Overwhelming evidence supports the existence in autism

spectrum individuals of biases towards local, compared to
global, perception and processing of visual information
(reviewed in [59]). However, the degree to which such
biases are caused by weaker central coherence, compared
to more locally-oriented cognition (with typical central co-
herence), less interference of global structure with local
processing, or enhanced locally-oriented perceptual func-
tions, remains to be established [60-64]. In schizophrenia,
relative advantages in global compared to local visual pro-
cessing have been reported by some studies (see for ex-
ample [65,66]), but not others (see for example [67,68]),
and the specific tasks deployed usually differ from those
used in studies of autism. However, performance on the
embedded figures test, or comparable figure-ground tests,
is reduced in individuals with schizophrenia compared to
controls [69-71], and worse performance on this test has
also been associated with higher levels of positive schizo-
typal traits [58] and severity of disorganized and negative
schizophrenia symptoms [71,72] (see also [73]).
In typical development, a large suite of recent studies has

demonstrated that younger individuals exhibit a local bias
in the perception and processing of visual information,
which gradually changes to a global bias from about age 4
to adolescence [74-81]. This developmental shift from local
to global bias has, moreover, been linked, among typically
developing 6-year-olds, with grey matter reductions in right
occipital and parietal visuospatial brain regions, such that
anatomical maturation through differentially-local pruning
appears to ‘fine tune’ the visual cortex for processing global
visual information as development proceeds [78]. These
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findings provide evidence for links of local and global vis-
ual processing with short-range and long-range brain con-
nectivity, indicating that such sets of phenotypes subject
to developmental heterochronic effects may be causally
connected or otherwise interact.
An especially informative specific example of local-

global visual processing effects in autistic individuals and
typically developing children of different ages comes from
studies of visual illusions. A suite of reports has provided
evidence that autistic individuals are less susceptible
than typically developing individuals to visual illusions
[5,82-88], which is consistent with enhanced local and
context-independent processing in autism [5,82]. More-
over, decreased susceptibility to visual illusions has been
associated with better performance on the embedded fig-
ures test [83,89,90] and block design [83,84], as well as a
more systemizing cognitive style [91], which indicates that
these different measures of autistic perception and cogni-
tion reflect overlap and convergence in their neural
underpinnings.
Several studies show evidence for increases with age,

across childhood, in visual illusion susceptibility [92-94],
although some other reports demonstrate an opposite pat-
tern [95]. Such variation, and variation in results among
studies of illusions in autism, may be due in part to differ-
ences in the specific tests employed, gender-related vari-
ation in illusion susceptibility (with males less susceptible;
[84,90,96]), and differences in how participants were
questioned, regarding whether lines or figures ‘looked’
different, or ‘were’ different [85]. Finally, in contrast to
autism, schizophrenia involves overall increases in suscep-
tibility to visual illusions, across multiple studies [97-100],
which have been interpreted to indicate ‘excessive spatial
contextual effects of the frame’ [100].
These findings generally accord with the developmental

heterochronic model, with regard to local and global visual
processing. However, more robust tests of the extent to
which the local-global processing differences between autis-
tic and typically developing individuals parallel the differ-
ences between young and older typically developing
children require that the same visual-processing tests be
deployed across both groups, and that similar neuro-
physiological and psychological processes (involving
weaker central coherence, stronger local bias, enhanced
perceptual function, increased systemizing, or some com-
bination) underlie both the autism-neurotypical and age-
related differences. Indeed, partitioning of perceptual-level
effects per se from effects of enhanced visuospatial pro-
cessing is required for interpretation specifically in terms
of local and global effects. Such studies may usefully
proceed by testing for local-global visual processing differ-
ences and generally enhanced visuospatial skills between
typically developing children who vary in their scores on
independent metrics of autistic cognition and behavior.
Pitch perception
Perception of auditory pitch information may involve ab-
solute pitch (specific pitches) or relative pitch (involving
intervals between pairs of consecutive tones). Absolute
pitch ability refers to the spontaneous identification of a
particular pitch label (for example, middle ‘C’) when ex-
posed to a musical tone, a skill that requires notably in-
creased auditory-perceptual and discrimination skill
[101].
The prevalence of absolute pitch ability has been

estimated as about 0.01% in typical populations, but
between 5% and 11% in autism, and autism involves
notably enhanced abilities in pitch discrimination and
memory ([102,103]; review in [8]). A higher level of
autism-related traits has also been reported in non-
clinical individuals with absolute pitch [104,105], and
autism spectrum scores have demonstrated significant
positive correlation with abilities to correctly identify
absolute pitch [105]. In schizophrenia and schizotypy,
pitch discrimination and memory abilities are, by com-
parison, strongly reduced compared to control indi-
viduals [106-109], in association with deficits in basic
processing of non-auditory as well as auditory sensory
stimuli [110,111].
In typically developing individuals, infants perceive

absolute pitch more than relative pitch, and show the
ability to track ‘extremely fine-grained information’ re-
garding absolute pitch [112]; by contrast, adults depend
primarily on relative pitch [112,113]. In their study
Stalinski and Stellenberg [101,114] show that this transi-
tion involves a monotonic increase in use of relative
pitch information, and a decrease in use of absolute
pitch information, during development from ages 5 to
12. The achievement of absolute pitch in typically devel-
oping individuals normally requires some level of mu-
sical training, which is especially effective at younger
ages [115,116]. By contrast, in autistic individuals abso-
lute pitch usually develops before any training in musical
skills [8].
Absolute pitch perception shows clear evidence of

developmental heterochrony across typically developing
and autistic individuals, although it is important to note
that pitch discrimination abilities cannot necessarily be
equated with use of absolute compared to relative pitch
information. Moreover, the degree to which absolute pitch
perception in autistic individuals recruits the same brain
regions as in typical individuals remains to be established.
Of particular interest with regard to developmental transi-
tions in pitch perception is conceptualization of the shift
as involving the ‘unlearning’ of absolute pitch perception,
because it leads to the generation of overly specific cat-
egories of sounds that inhibit learning of higher-level pat-
terns [112,117]. In this general regard, absolute pitch
perception in autism may be considered as a specific
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manifestation of enhanced local, detail-oriented perceptual
function [8], which does not complete a typical develop-
mental trajectory.
Autism has also been reported to involve enhance-

ments in other modalities of perception, including, for
example, vision [118] and tactile sensitivity [119] (re-
views in [7,8]), but these topics have been subject to less
extensive investigation.

Developmental heterochrony, human evolution, and the
autism spectrum
Neurodevelopmental conditions such as autism are usu-
ally conceptualized in terms of deficits, disorders, dis-
ease, genetic abnormalities, and ‘pathological’ expression
of maladaptive neurological and behavioral phenotypes.
These frameworks for understanding and analyzing aut-
ism spectrum conditions can be useful for elucidating
proximate mechanisms that underlie the causes of aut-
ism, but they tend to implicitly assume that neural and
psychological development in autism is fundamentally
atypical, due to deviation from normative trajectories
that starts in the early stages of brain growth and
differentiation.
In this article, I have evaluated an alternative, though

not necessarily exclusive, model for the etiology of aut-
ism, which is based simply on shifts in the timing and
rates of infant and child development. This heterochro-
nic developmental model shows clear concordance with
well-replicated patterns in the literature on autism and
child development in that across the four domains of (1)
restricted interests and repetitive behavior, (2) short-range
and long-range functional and structural connectivity,
(3) local and global visual perception and processing,
and (4) auditory pitch perception and processing, the
differences between autistic and typically developing in-
dividuals mirror the differences between younger and
older typically developing individuals. The latter three
domains are also expected to be causally associated, in
that shorter-range connectivity may subserve more local
perception and processing (see for example [63,120]) as
well as finer-grained sensory discrimination, although
such associations have yet to be studied in a targeted
way.
The aspects of autism evaluated here can thus be

explained, in part, as involving developmental delays or
non-completion that lead to mismatches of chrono-
logical age with perceptual, cognitive and behavioral pro-
files. Other central phenotypes of autism, such as delay
and underdevelopment of language, social reciprocity,
joint attention, pretend play, imagination, object identifi-
cation, and other aspects of cognition and social behav-
ior [1,4,121-123], fit naturally into this simple paradigm.
This framework may also be useful in understanding
some notable behavioral features of autistic syndromes,
such as high levels of positive affect in Angelman and
Rett syndromes [124,125]. Finally, the developmental
heterochronic model may help to explain the strong
male bias found in autism, given that typically develop-
ing males tend to undergo slower verbal and social de-
velopment than typically developing females, and thus
may be more vulnerable to alterations that notably delay
or impede normative development.
The purpose of a developmental heterochronic con-

ceptualization for the autism spectrum is not to equate
it with other diagnostic tools or categories, such as de-
velopmental delay, but to demonstrate the nature and
ultimate, evolutionary causes of the continuity of autism
spectrum phenotypes with typical childhood phenotypes,
and to help explain the sources of the otherwise in-
explicable constellation of morphological, psychologi-
cal and behavioral traits first described by Kanner and
Asperger. Moreover, to the extent that psychological
traits of children represent not just immature, under-
developed phenotypic stages necessary to reach the
adaptive mature target stage, but also in many cases
ontogenetically-based, stage-specific adaptations that
change in qualitative form as development proceeds
[17,126,127], retention of relatively ‘early-development’
traits in autism will necessarily involve some mixture of
cognitive enhancements and deficits, as abundantly ob-
served in this literature.
From an evolutionary perspective, genetically-based

variation in timing and rates of childhood development
is also not unexpected, given that the evolutionary his-
tory of human development and life history have
followed a similarly structured trajectory of change, to-
wards extension of development in traits ranging from
brain gene expression [128,129], to synaptic plasticity
[130], synaptic spine development [131] and myelini-
zation [132]. In principle, pathways and sets of genes
that underlie growth, neurodevelopment, and synaptic
function should thus be expected to overlap between hu-
man evolutionary changes (and evolutionary changes
earlier in primate and mammalian development) and al-
terations, as well as segregating variation, that distin-
guish the autism spectrum from typical development.
Such overlaps are reflected in evidence for Darwinian
positive selection, and recent human-specific changes in
otherwise conserved amino acid positions, in genes such
as AHI1, CNTNAP2 and FOXP2 that have been associ-
ated with risk of autism [133-139]. A primary use of evi-
dence from positive selection studies in this regard is
that they provide evidence of neurodevelopmental func-
tions for specific haplotypes or amino acid variation,
which can direct neurogenetic studies along direct, pro-
mising paths. Genes that mediate apparent heterochro-
nic changes and variation have been described from taxa
other than humans (see for example [140]), and genetic



Crespi BMC Medicine 2013, 11:119 Page 7 of 11
http://www.biomedcentral.com/1741-7015/11/119
variation has been associated with the timing of lan-
guage acquisition traits in autism [141], but the genetic
basis of human childhood developmental timing for
other traits related to psychiatric conditions has yet to
be investigated in any detail. Genetic variation in age-
structured gene expression patterns may indeed help to
explain the high heritability of autism, as age-related ex-
pression adds an additional, temporal dimension to gen-
etic effects on phenotypic variation.
Developmental heterochronic shifts may, of course,

proceed in either of two temporal directions. As de-
scribed above, autism appears to involve delays and non-
completion of typical developmental trajectories, which
can be considered as extensions of developmental neot-
eny for some set of neurological systems. By contrast,
the evidence described here, as well as previous theoret-
ical considerations of schizophrenia in terms of ‘failures
of neoteny’ [15,16], suggest that schizophrenia exhibits
elements of premature and accelerated differentiation,
the opposite pattern to that observed for autism. Such
heterochronic alterations are reflected, for example, in
decreased cortical growth and size [142-144], and exces-
sive and relatively early synaptic pruning, neuronal
apoptosis and loss of grey matter [145,146], with appar-
ent consequent relative increases in long-range relative
to short-range patterns of connectivity, at least for some
systems such as the default network [147,148]. As in aut-
ism, alterations to childhood and adolescent neurode-
velopmental timing and rates are expected to involve
decreased performance in some set of psychological
traits including language and social cognition, although
for fundamentally different reasons [12,149].
Further tests of the developmental heterochronic mo-

del, and its contribution to helping explain psychological
variation among typically developing individuals as well
as in autism, schizophrenia, and related conditions, re-
quire integration of information from genetic, deve-
lopmental, and neurological studies, using analyses that
explicitly compare multiple neurodevelopmental condi-
tions in longitudinal frameworks (see for example [146]).
The timing of developmental shifts in key neurophysio-
logical systems, such as cortical thickness acceleration
and deceleration [49], N-methyl-D-aspartate (NMDA)
receptor subunit composition [150,151], maturation of
primary sensory versus association cortex [152], ratios of
excitatory to inhibitory neurotransmission [153-155] and
growth and myelinization of long-range connections
[29,152], and their genetic bases in such processes as
time-dependent production of microRNAs (see for ex-
ample [156]) and epigenetic regulation of brain matur-
ation by methyl CpG binding protein 2 (MeCP2) [157],
should provide relatively strong links between neurode-
velopmental timing, its genomic bases, and cognitive
outcomes. Such studies will be especially illuminating
when conducted in the overall context of recent evolu-
tionary changes in human brain structure and function
[139], which are expected to have structured the me-
chanisms and trajectories of neurodevelopmental shifts.
Perhaps most importantly, to the extent that delay or
non-completion of cognitive development, rather than
primary, pathological alterations, underpin some subset
of autism spectrum conditions, autism may be more
amenable to treatment than is otherwise believed [158].

Summary
This article evaluates the hypothesis that some of the
major features of autism represent outcomes of shifts in
the rate and timing of childhood development, such that
traits typical of relatively young individuals are expressed
for longer periods, or typical development is not com-
pleted. Comprehensive review of the literature indicates
that across the four domains of (1) restricted interests
and repetitive behavior, (2) short-range relative to long-
range functional and structural connectivity, (3) local
and global visual perception and processing, and (4)
auditory pitch perception and processing, the differences
between autistic and typically developing individuals par-
allel the differences between younger and older typically
developing individuals. In contrast to autism, schizo-
phrenia appears to involve developmental heterochronic
shifts in the opposite direction, towards accelerated neu-
rodevelopmental differentiation, as reflected, for exam-
ple, in excessive synaptic pruning and neuronal apoptosis.
Given that the evolution of human life history has prom-
inently involved changes in the duration of childhood,
these results lend an evolutionary dimension to the ana-
lysis of neurodevelopmental psychiatric conditions, and
suggest that neurogenetic studies should focus more dir-
ectly on the causes of variation in rates and timing of
childhood neurodevelopmental processes.
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