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Abstract

Background: Bone tissue engineering and the research surrounding peptides has expanded significantly over the
last few decades. Several peptides have been shown to support and stimulate the bone healing response and have
been proposed as therapeutic vehicles for clinical use. The aim of this comprehensive review is to present the
clinical and experimental studies analysing the potential role of peptides for bone healing and bone regeneration.

Methods: A systematic review according to PRISMA guidelines was conducted. Articles presenting peptides
capable of exerting an upregulatory effect on osteoprogenitor cells and bone healing were included in the study.

Results: Based on the available literature, a significant amount of experimental in vitro and in vivo evidence exists.
Several peptides were found to upregulate the bone healing response in experimental models and could act as
potential candidates for future clinical applications. However, from the available peptides that reached the level of
clinical trials, the presented results are limited.

Conclusion: Further research is desirable to shed more light into the processes governing the osteoprogenitor
cellular responses. With further advances in the field of biomimetic materials and scaffolds, new treatment
modalities for bone repair will emerge.
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Background
After a traumatic insult to the bone, the musculoskeletal
system mounts both local and systemic reactions facili-
tating the prompt restoration of the continuity of bone
and normal function. Unfortunately, this process is not
always successful. Approximately 5 % to 10 % of the
fractures occurring are associated with impaired healing,
including delayed union or non-union [1–5]. Fracture
non-union often results in devastating outcomes for the
patient and the surgeon [2, 5, 6], requiring a complex,
long-lasting and expensive treatment, and a variable de-
gree of morbidity is often a common finding [2, 7, 8].
In established non-unions and bone defects, bone

grafting is a common procedure. It is estimated that 1.5
million bone grafting procedures are performed annually

in the USA and this figure is rapidly increasing due to
population ageing [2, 7, 9–13]. The intense research in
this field seen over the last few decades, has resulted in
the discovery of several proteins that can upregulate the
bone healing response [14, 15]. Bone morphogenetic
proteins (BMPs) are the most representative example,
which have been granted US Food and Drug Adminis-
tration (FDA) approval for clinical applications in recal-
citrant long bone non-unions, lumbar fusion and open
tibial shaft fractures [16–18]. Several other proteins have
shown to upregulate the osteogenic bone healing process
[19–22]. However, the high cost derived from the purifi-
cation techniques and the high doses required due to
the instability of these molecules in vivo are the two
most significant points of concern [23]. Recombinant
DNA technologies have simplified the production of
these molecules and the discovery of a variety of osteo-
genic peptides has emerged [24].
The terms protein, polypeptide, oligopeptide and peptide

are rather ambiguous and overlapping in their meaning
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[25]. Proteins usually refer to denote an entire biological
molecule in a stable conformation, while peptides refer to
short amino acid oligomers most commonly lacking a
stable 3-dimensional structure. In general, they exert their
effect through binding to specific high-affinity receptors on
the respective target cell receptors [25].
To date, a number of peptides have been engineered

to upregulate the osteogenic response. Although BMP-
derived peptides are the most studied, other peptides
also exist. The aim of this study is to identify the cur-
rently existing osteogenic peptides, other than those de-
rived from BMPs and to investigate their impact in the
upregulation of bone healing and bone regeneration.

Methods
This review was conducted in accordance to the
PRISMA guidelines [26]. Publications from January 1980
to date were included.

Eligibility and exclusion criteria
Studies selected were original articles publishing results
on the effect of different peptides on osteoblasts and
osteoprogenitor cells as well as in vivo studies on bone
healing. All studies that did not fulfil all eligibility cri-
teria were excluded from further analysis. Exclusion cri-
teria included manuscripts in languages other than
English and those with incomplete documentation. Also,
peptides related to BMPs or those related to cells types
or conditions distant to bone healing or bone cells were
excluded from the selection process as these were out of
the scope of the manuscript.

Information sources
Studies were identified by searching PubMed Medline,
Ovid Medline, Embase, Scopus, Google Scholar, and the
Cochrane Library to retrieve all available relevant articles.
The terms used for the search included combinations of
primary keywords including ‘peptide’, ‘sequence’, and
‘motif ’ with secondary keywords including ‘bone’, ‘osteo-
blast’, ‘bone healing’, ‘mesenchymal’, ‘fracture’, ‘non-union’,
‘osteoprogenitor cells’, ‘stem cells, ‘growth factor’, and
‘extracellular matrix’. The identified articles and their
bibliographies, including any relevant reviews, were manu-
ally searched for additional potential eligible studies.

Study selection
Two of the authors (IP, MP) performed the eligibility as-
sessment in an independent, unblinded and standardised
manner. Most citations were excluded on the basis of in-
formation provided by their respective title or abstract.
In any other case, the complete manuscript was ob-
tained, scrutinised by the two reviewers and included if
fulfilling the eligibility criteria.

Results
Out of 6017 papers that were initially identified, 197 met
the inclusion criteria (Fig. 1) [27–223]. These studies are
presented below.

Parathyroid hormone-related peptides
Parathyroid hormone 1–34 peptide (Teriparatide)
Parathyroid hormone (PTH) is an 84-amino acid, natur-
ally occurring protein that plays a major regulatory role
in mammalian mineral ion homeostasis. The peptide de-
rived from its 34 amino acid domain has similar activity
to the full length protein [224]. PTH1–34 is one of the
earliest artificially synthesized amino acid fragments that
was granted approval for the prevention and treatment
of osteoporosis. Among its several functions, PTH1–34

stimulates osteoblast proliferation, differentiation and
prevents their apoptosis (Fig. 2) [51].
Synthetic matrix made of polyethylene-glycol contain-

ing PTH1–34 significantly stimulated in situ bone aug-
mentation in rabbits [29]. Evidence from animal models
shows that daily subcutaneous injections of PTH1–34 sig-
nificantly increased the bone mineral content and dens-
ity as well as the total osseous tissue volume, torsional
strength and stiffness [27, 30]. Additionally, accelerated
callus mineralization, increased bone density at the frac-
ture site, and better mechanical properties of the united
bone have been reported [27, 31, 32, 47–51].
To date, several case reports have indicated that teripara-

tide could facilitate the healing of sternal non-union [34],
stress fractures [35], atrophic humeral shaft non-union
[36], femoral non-union [37, 41, 42, 47, 225], hip fractures
[40], delayed unions [38, 43, 44], periprosthetic fractures
[45], and sacral and pubic insufficiency fractures [39].
In a prospective randomized double-blind study,

Aspenberg et al. [28] analysed the effect of daily

Fig. 1 Flowchart of study selection process
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injections of 20 and 40 μg of recombinant teriparatide
against placebo in post-menopausal women who sus-
tained a distal radial fracture. Although they reported no
significant difference between the teriparatide 40 μg ver-
sus placebo groups, they reported a shorter time to heal-
ing between the teriparatide 20 μg group and placebo
(P = 0.006). In a post hoc subgroup analysis by the
same group, blinded qualitative scoring of the calluses
at 5 weeks suggested that patients who received
PTH1–34 had a more ‘rich’ callus formation [33].

Parathyroid hormone-related protein
Human parathyroid hormone-related protein (PTHrP)
consists of 139–175 amino acids and is a key regulator
of cell growth, differentiation, and development of the
foetal skeleton [59–62, 226–228]. Endogenous PTHrP
plays an important role in fracture healing as demon-
strated in an PTHrP haplo-insufficiency model where re-
duced cartilaginous and bony callus formation was
noted together with reduced endochondral and osteo-
blastic bone formation [229]. However, a PTHrP1–34
maintains a less pronounced anabolic effect to the bone
and osteoblasts possibly due its higher clearance rate
[52, 53]. To overcome this weakness, several analogues
have been developed to date [54–57].
PTHrP1–36 exerts an anabolic action to bone, includ-

ing enhanced bone histological features and raised
osteoblast differentiation markers in the long bones and

plasma in mice [57]. Cavitary bone defects treated with
PTHrP107–111 improve local bone induction in a rabbit fem-
oral cavity defect model [58]. A C-terminally substituted
analogue of PTHrP1–34, the RS-66271, was found to in-
crease trabecular and cortical bone in ovarectomized osteo-
penic rats [54]. In an impaired bone healing animal model,
daily injections of RS-66271 resulted in a larger callus area,
greater stiffness and torque when compared with controls
[56]. A similar analogue of PTHrP, the RS-50303, was
found to enhance fracture healing in a rat femoral osteot-
omy model [55].

Calcitonin gene-related peptide
Calcitonin gene-related peptides (CGRP) are found in
two forms, α and β. α-CGRP derives from the Calca
gene and consists of 37 amino acids [230]. It has a 20 %
homology with calcitonin. In contrast, β-CGRP derives
from a separate gene, termed Calcb, which is located in
close proximity to Calca. In bone, CGRP is found in the
sensory nerve endings in periosteum, bone marrow and
metaphysis [66]. Among its several functions, CGRP has
been found to stimulate the proliferation and differenti-
ation, and to reduce the apoptosis of osteoprogenitor
cells [63, 64, 75, 79, 231]. CGRP levels increase in patients
with fractures, and it has been postulated that this plays
an important role during the inflammatory stage of bone
healing and overall during damaged tissue repair [72, 80].
Transgenic mice engineered to overexpress CGRP have

Fig. 2 Potential pathways and effect of peptides on the osteoblastic cell lines
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been found to have high trabecular bone density and bone
volume [65], also associated with an increase in bone for-
mation rate. On the contrary, α-CGRP null mice devel-
oped osteopenia caused by a reduced bone formation rate
[69]. CGRP was also found to stimulate the production of
osteogenic molecules like IGF-I and BMP-2 [76–78].
Despite the abovementioned experimental evidence,

limited in vivo studies have explored the potential sup-
plementary effect of CGRP on bone healing. The litera-
ture suggests that, during fracture healing, the systemic
levels of CGRP increase [72]. Fracture evokes an intense
local in-growth of new nerve fibres containing CGRP
thus possibly playing a role in the bone healing process
[71]. When the bony innervation is disrupted locally, this
results in an insufficient fracture callus [73]. Furthermore,
Song et al. [70] speculated that the increased levels of
CGRP secondary to traumatic brain injury may have led
to the enhancement of fracture healing seen in this patient
group. In an experimental model of induced fatigue bone
damage, administration of CGRP or CGRP(8–37) in-
creased reparative bone formation [74].

Osteogenic growth peptide (OGP)
OGP is a naturally occurring, highly conserved, 14-
amino acid, H4 histone-related peptide [81], abundant in
human and mammalian blood as well as in culture
media of osteoblasts and fibroblasts [81, 82]. Following
its dissociation from the a2-macroglobulin, the peptide is
proteolytically cleaved to generate a C-terminal penta-
peptide, which activates an intracellular Gi-protein-MAP
kinase signalling pathway [232, 233].
OGP was found to exert an anabolic effect on bone cells,

resulting in an increase of bone formation and overall bone
mass [81, 83]. In vitro studies have shown that OGP can
regulate osteoprogenitor cell proliferation, differentiation,
alkaline phosphatase activity, osteocalcin secretion, colla-
gen and matrix mineralization [85–87, 92]. In vivo OGP
was found to regulate TGF-b1,b2,b3, FGF-2, IGF-I and
aggrecan [85]. Further, transgenic mice overexpressing
OGP have significantly increased peak bony mass [91].
Experimental fracture healing models have shown that

OGP can serve as a potential candidate in enhancing the
bone healing response (Table 1) [83–85, 88, 89]. Systemic
administration of OGP accelerated bony union with en-
hanced bridging across the fracture gap, higher volume of
callus and newly formed bone [85, 89]. Shuqiang et al.
[84] treated 1.5-cm segmental defects in rabbits with an
OGP incorporated in a PLGA scaffold. Their results
showed a higher bony volume and acceleration of bone
healing response.

Thrombin Peptide 508 (Chrysalin)
Thrombin peptide 508 (TP508), also known as Chrysalin,
is a 23-amino acid synthetic peptide that represents the

non-proteolytic receptor binding domain of thrombin.
TP508 mimics some specific attributes of the thrombin,
without the undesirable blood clotting effects. TP508 was
found to enhance the proliferation and differentiation of
and induces chemotaxis in human osteoblasts [103, 104].
It enhances VEGF-stimulated angiogenesis and attenuates
effects of chronic hypoxia [105].
A number of in vivo animal models have all demon-

strated that TP508 could have an upregulatory effect on
bone healing (Table 2). Two animal studies, analysing
the effect of TP508 loaded on PPF composite and micro-
sphere scaffolds on segmental bone defects in rabbits,
showed enhanced bone formation with a higher tor-
sional stiffness of bone [99, 101]. TP508 injected into
the fracture gap promotes fracture healing and increased
blood vessel formation [95, 97, 102]. In animal models
of distraction osteogenesis, injection of TP508 into the
fracture gap resulted in enhanced bone formation and
consolidation [94, 100]. In similar models, increased
numbers of osteoblasts were apparent as well as the in-
creased quality of bone [96, 98, 100].
In the clinical setting, TP508 has failed to display the

same beneficial effects as in animal studies. A double-
blinded, randomized, placebo controlled Phase III clin-
ical trial has been conducted to analyse the effect of
Chrysalin for the treatment of unstable displaced distal
radial fractures [106]. The initial results demonstrated a
statistically significant shorter time to the radiologic
consolidation of the fractures but not differences in
terms of the range of motion, grip strength and VAS or
DASH scores [107]. Furthermore, the trial failed to show
any statistically significant difference in the time of re-
moval of the immobilization device, which was the pri-
mary end point of the study [108].

Cell-binding peptides
PepGen P-15
The P-15 peptide is a highly conserved peptide that con-
sists of 15 amino acids identical to the cell-binding re-
gion of collagen type I [234]. P-15 enhances cell
attachment to bone substitutes and upregulates extracel-
lular matrix (ECM) production [112]. At the same time,
it promotes cell survival and can be absorbed into a cal-
cium phosphate substrate [111]. When P-15 is added in
scaffold material, it results in a significantly higher gene
expression of alkaline phosphatase (ALP), BMP-2 and
BMP-7 [235]. This upregulated gene expression could
suggest that P-15 promotes osteoblastic activity in hu-
man osteoblast cells. Indeed, P-15 was found to stimu-
late the proliferation and differentiation rate as well as
the growth factor production of osteoblasts in vitro [113,
137, 189]. On the contrary, Vordemvenne et al. [104] re-
ported that P-15 alone is not capable of upregulating the
proliferation and calcifying potential of human osteoblasts
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in vitro. When combined with PDGF, a statistically signifi-
cant increase in both proliferation and calcification was
noted [104].
Preclinical results have shown that P-15-containing

bone graft substitutes could facilitate bone healing and
regeneration [118]. In bone defects, application of P-15-
containing bone substitutes increased the rate of bone
growth compared to the defects left empty or filled with
bone substitute alone [120, 121, 123, 124, 132, 138]. In
critical sized segmental defect in a rat radius, application
of inorganic bone matrix together with P-15 resulted in
positive effect on bone healing, without any immuno-
genic features and disease transmission risk [133]. The
use of the same graft material was found as successful
as autogenous bone graft in producing lumbar spinal
fusion in an ovine model [119]. However, some con-
troversial data exist, with some authors reporting less

favourable results with P-15-containing graft substi-
tutes [125, 126]. In addition, application of the P-15-
containing graft substitutes was found to accelerate
the process of early bone formation response but not
the long-term effect [129, 131, 135].
The majority of clinical evidence derives from substi-

tutes for the oral cavity [109, 110, 114–117, 122, 127,
128, 130, 134, 136, 139]. Periodontal osseous defects in
25 patients treated with combination of anorganic
bovine-derived hydroxyapatite matrix and P-15 showed
favourable clinical results [109]. In the treatment of non-
unions limited evidence exists [236]. Gomar et al. [236]
treated 22 patients with non-uniting fractures with P-15
containing bone graft substitutes. They reported a
90 % success rate and concluded that it could be an
effective, safe and economical alternative to autolo-
gous bone grafting.

Table 2 In vivo animal studies presenting the effect of TP508 on bone and bone healing

Study/Year Model Mode of delivery Results

Hedberg et al., 2004 [101] Segmental bone defect
in rabbits

PPF composite scaffolds with
200 or 100 μg TP508

• Enhance bone formation with 200 μg TP508 possibly
due to the initial high burst of the molecule

Sheller et al., 2004 [99] Segmental bone defect
in rabbits

Microspheres with 100 μg or
200 μg TP508

• Enhanced healing of the defects with higher torsional
stiffness in the animals treated with TP508

Li et al., 2005 [100] Distraction osteogenesis
in rabbits

30 μg or 300 μg into the
distraction gap

• Enhanced bone formation and consolidation, the 300 μg
treatment group had the most advanced results

Wang et al., 2005 [102] Femoral fracture in rats 1 μg or 10 μg in the
fracture gap

• TP508 found to promote fracture healing by inducing
the levels of growth factors, inflammatory mediators
and angiogenesis-related genes

Amir et al., 2007 [98] Distraction osteogenesis
in rabbits

30 or 300 μg into the
distraction gap

• Enhance bone regeneration with increased number
of osteoblasts

Li et al., 2007 [97] Rat femoral fracture model 1 μg, 10 μg or 100 μg in
the fracture gap

• TP508 accelerated fracture healing by upregulating
the expression levels of molecules involved in cellular
proliferation, cellular growth and apoptosis

Wang et al., 2008 [96] Distraction osteogenesis
in rabbits

Slow releasing TP508
preparation (300 μg in
PPF/PLGA microparticles)

• Enhanced bone consolidation process with better
quality bone

Hanratty et al., 2009 [95] High energy femoral
fracture in mice

10 μg or 100 μg at fracture
site, or 100 μg at muscles
adjacent the fracture

• 100 μg in fracture gap significantly increased bone
formation and fracture stiffness

• Less scar tissue and increased blood vessel formation
was noted when TP508 was injected in the adjacent to
the fracture muscles

Cakarer et al., 2010 [94] Distraction osteogenesis
in rats

10 μg and 100 μg
percutaneously

• Significant larger area of consolidation in the animal
receiving TP508; the higher dose was more effective

Table 1 In vivo animal studies presenting the effect of osteogenic growth peptide (OGP) on bone and bone healing

Study/Year Model Mode of delivery Results

Sun et al., 1998 [89] Tibial fracture in rabbits IV administration • OGP treatment accelerated fracture union

Brager et al., 2000 [85] Femoral fracture in rats Systematic administration
of OGP (25 ng/day)

• OGP enhances proliferation and differentiation of osteogenic
cells possibly through the upregulation of TGF-beta

Gabet et al., 2004 [83] Mid-femoral fracture in rats Systematic administration
of OGP

• OGP administration resulted in enhanced bridging across
fracture gap, higher volume of callus and newly formed bone

Shuqiang et al., 2008 [84] Radial 1.5 cm segmental
defect in rabbits

OGP incorporated in PLGA • The rate of bone formation and volume were statistically
significantly upregulated in experimental group

Zhao et al., 2011 [88] Distraction osteogenesis
in rabbit tibia

Systematic administration
of OGP (200 ng/kg/day)

• OGP treatments resulted in greater torsional stiffness, higher
chondrocyte numbers and amount of newly formed bone
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RGD containing peptide
Arginyl-glycyl-aspartic acid (RGD) sequence is found in
several molecules and constitutes a system of cell surface
signalling [237]. Evidence suggests that RGD enhances cell
attachment and spreading of osteoblasts onto scaffolds
and graft material [140, 141, 159, 188] whilst increasing
cellular proliferation and the expression of ALP, Runx2,
osteocalcin, osteopontin and bone sialoprotein [141, 142,
146, 190, 191]. Further, it promotes osteoblast differenti-
ation and mineralization [143, 144, 146, 157, 158, 197].
Limited in vivo studies exist today analysing the effect of

RGD on bone healing; however, several authors have in-
vestigated the effect of RGD peptides on implant surfaces.
RGD coated implants were found to have an increased
peri-implant bone formation and enhanced direct bone
apposition even in areas of poor surrounding bone [148,
149, 151, 152, 155, 156]. This significantly increased the
bone-to-implant contact [149]. When RGD-coated intra-
medullary nails were inserted into the tibia of male adult
Wistar rats, the outcome was increased new bone forma-
tion [148]. Finally, it should be mentioned that RGD-
containing scaffolds used to deliver growth factors, such
as BMP-2 to promote bone regeneration in experimental
fracture models, exist with favourable results [150]. In
contrast to the abovementioned results, some fracture
models have shown that RGD utilization could have detri-
mental effects. Hennessy et al. [153] showed that, when
RGD was combined with adsorbed tibial proteins like fi-
bronectin, vitronectin and fibrinogen, a markedly detri-
mental effect on mesenchymal stem cell (MSC) adhesion
and survival was observed. No significant effects of an
additional RGD coating on HA surfaces were detected in
a rabbit model for cementless joint prostheses [154].

Other ECM-derived peptides
In addition to P-15 and RGD, other ECM-derived pep-
tides are currently being developed for potential applica-
tions in amplifying the bone healing response. They
represent signalling domains found along the ECM pro-
tein chains and are capable of interacting with receptors
on the cellular membrane.
GFOGER (glycine-phenylalanine-hydroxyproline-glycine-

glutamate-arginine) is a collagen-mimetic peptide. It select-
ively promotes α2β1 integrin binding, which is a crucial
event for osteoblastic differentiation [162]. Implants coated
with GFOGER were found to improve peri-implant bone
regeneration and osseointegration [162, 164]. Results
showed significantly accelerated and increased bone forma-
tion in non-healing femoral defects compared to uncoated
scaffolds and empty defects. GFOGER could be utilized as
a growth factor delivery vehicle, which can upregulate the
fracture healing response [161].
The collagen-binding motif (CBM) is a cleavage prod-

uct of osteopontin that can specifically bind to collagen

[180]. The CBM was found to promote migration and
osteogenic differentiation via the Ca2+/CaMKII/ERK/
AP-1 signalling pathway [181]. In a rabbit calvarial
defect model, application of an injectable gel contain-
ing synthetic CBM peptide resulted in increased cell
adhesion and growth of osteoblasts followed by in-
creased osteoblastic differentiation and marked bone
formation [180, 238].
DGEA (Asp-Gly-Glu-Ala) is a recognition motif used

by type I collagen to bind to α2β1 integrin [165]. This
collagen peptide sequence has been shown to promote
cell adhesion, spreading and osteogenic differentiation
[163, 165, 166]. DGEA, engineered to express a hepta-
glutamate domain, was found to accumulate within bone
tissue following intravenous injection [168], suggesting
that such an approach could be used for drug to bone de-
livery. DGEA coupled with heptaglutamate-containing hy-
droxyapatite was found to enhance the adhesion and
osteoblastic differentiation of MSCs as well as to increase
new bone formation and bone-to-implant contact [167].
The SVVYGLR (Ser-Val-Val-Tyr-Gly-Leu-Arg) peptide

sequence is found adjacent to the RGD sequence in osteo-
pontin [239]. SVVYGLR peptide significantly enhanced
the adhesion and proliferation of MSCs but also endothe-
lial cell activity, resulting in an upregulation of neovascu-
larization [169, 239, 240]. Experimental models of bone
defects have shown that, when SVVYGLR was implanted
together with a collagen sponge, an upregulation of osteo-
genesis and angiogenesis was observed [169, 239].
KRSR (lysine-arginine-serine-arginine) is a heparin-

binding site found in fibronectin, vitronectin, bone sialo-
protein, thrombospondin, and osteopontin [173]. KRSR
increased osteoblast adhesion and osteogenic gene ex-
pression [171, 172, 177, 178]. Anodized nanotubular ti-
tanium coated with KRSR, RGDS (arginine-glycine-
aspartic acid-serine) and molecular plasma deposition
increased osteoblast density compared with uncoated
substrates [174]. Likewise, KRSR and RGD coated on titan-
ium promoted the greatest osteoblast densities relative to
untreated titanium [175]. On the contrary, less favourable
results in terms of stimulation of cell adhesion and spread-
ing were reported by other studies [173, 179].
FHRRIKA (Phe-His-Arg-Arg-Ile-Lys-Ala) is a cell-

binding and putative heparin-binding domain of bone sia-
loprotein. FHRRIKA could have a favourable effect on
osteoblast adhesion, spreading and mineralization [183].
Osteoblast outgrowths from rat calvarial bone chips cov-
ered a significantly larger area on FHRRIKA surface [176].
Rat calvarial osteoblasts seeded into a scaffold containing
the RGD and FHRRIKA sequences were found to remain
viable and have higher proliferation kinetics compared to
the controls in which no peptides were added [184].
Fibronectin (FN)-derived peptides have also shown to fa-

cilitate osteoblast adhesion, spreading and mineralization
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[185]. A fibrin-binding synthetic oligopeptide derived from
FN was found to enhance new bone formation in rabbit
calvarial defect model [187]. In addition, the multifunc-
tional FN III9-10/12-14 greatly enhanced the regenerative
effects of BMP-2 and PDGF-BB in a rat critical-size bone
defect model [186].

NEMO-binding domain peptide (NBD)
The inhibitor of nuclear factor kappa-B kinase (IKK) is a
high molecular weight complex consisting of two cata-
lytic subunits (IKK-1 and IKK-2) and a non-catalytic
regulatory subunit NF-kB Essential Modulator (NEMO
or IKK-γ) [194]. NEMO interacts with both IKK sub-
units at the interacting region to amino acids 737–742,
called the NEMO-binding domain (NBD) [194]. NBD
peptide has shown to promote osteoblast differentiation
and inhibit bone resorption [192, 193]. A protective role
to the bone by blocking osteoclastogenesis and bone
erosion in inflammatory arthritis was also noted [195].
In vivo evidence is limited to a murine tooth extraction
model treated with lipopolysaccharide injection where
TNF-a retarded bone regeneration [196].

Cell penetrating peptides
Cell penetrating peptides (CPPs) are peptides that can
transverse the cellular membrane and transport their
‘cargo’ into the cytoplasm [241]. Such cargos include
proteins, siRNA, nanoparticles, oligonucleotides, and
other peptides [242]. CPPs can derive from bacteria and
viruses or synthesized in the laboratory [241, 242]. Jo et
al. [199] demonstrated that the CPP-conjugated co-acti-
vator-associated arginine methyltransferase 1 (CARM1)
protein can be delivered into human MSCs and change
their global gene expression profile. Furthermore, upregu-
lation of their differentiation capacity was noted [199]. In a
rabbit calvarial defect model treated with CPP with a tran-
scriptional factor fusion protein resulted in significantly in-
creased bone formation [200]. Similarly, in a critical-size
calvarial defect model, the inclusion of tetrameric CPPs in
ex vivo transduction of recombinant adenovirus expressing
BMP-2 into MSCs promoted highly mineralized bone for-
mation [201].

Self-assembly peptides
Self-assembly peptides are another class of peptides, re-
ferred by some as ‘molecular Lego’, that are composed of
alternating hydrophilic and hydrophobic amino acid res-
idues [243]. These residues have the tendency to spon-
taneously adopt a β-sheet structure when exposed to
monovalent cation solutions or placed under physio-
logical conditions [203, 243]. The outcome of this
process is the formation of self-assembled matrices with
interwoven nanofibers.

RADA16-I (AcN-RADARADARADARADA-CONH2)
is a synthetic commercially available peptide (PuraMatrix).
MSCs exhibited higher levels of expression of ALP, osteo-
calcin and Runx2 genes in RADA16-I-containing demi-
neralized bone matrix (DBM) compared to only DBM
[203]. Cell adhesion, proliferation and differentiation of
osteoblasts were found to be superior in the RADA16-I-
containing scaffold [204]. In vivo data derived from a
critically-sized femur defect in goats showed that the
volume of newly formed bone from marrow-enriched
RADA16-I/DBM was significantly higher compared to
marrow-enriched DBM alone [203]. Other authors
reported favourable outcomes with the utilization of
RADA16-I self-assembly peptide [206–212]. The addition
of BMP-2 in a hydrogel RADA16-I-containing scaffold sig-
nificantly enhanced bone regeneration on the bone aug-
mentation model in an animal bone defect model [205].
Peptide amphiphiles are another class of self-assembly

peptides that can support osteoprogenitor cells and
guide their differentiation [215, 216]. Mineralized matri-
ces containing peptide amphiphiles were found to pro-
mote osteogenic differentiation of human MSCs [213].
The combination of peptide amphiphiles with MSCs and
platelet-rich plasma was found to promote bone forma-
tion and enhance angiogenesis [214].

Other peptides
Numerous peptides have been isolated from the majority
of the existing growth factors and bone-related proteins.
Peptides derived from fibroblast growth factor were
found to upregulate osteoblast differentiation [202, 244].
Similarly, peptides have been derived from molecules
like BMPs, transforming growth factor-β, vascular endothe-
lial growth factor, insulin derived growth factor, although
their potential role in bone healing and regeneration
remains obscure [217–219, 222]. Other peptides
found to promote bone healing include the RANKL-
binding peptide, AC-100, mechano growth factor E,
and B2A2-K-NS (B2A) [223].

Discussion
Bone tissue engineering is a growing biomedical field.
All recent advances in the field of growth factors,
scaffolds and osteoprogenitor cells have boosted the ap-
plication and further expansion of tissue engineering
technologies. As far as growth factors are concerned,
several drawbacks prohibit their widespread use. Diffi-
culties arising from potential immunogenicity, large mo-
lecular weight, need for carriers for their delivery and
instability in vivo are well recognized [188]. Moreover,
concerns regarding their sterilization and their theoret-
ical involvement in carcinogenesis also exist [23, 188,
245–247]. The discovery that small protein segments
(peptides) have the capacity to exert a similar effect
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could overcome some of the abovementioned problems.
Not only do they have low immunogenicity but they can
also be easily synthesised and handled [188].
Chrysalin and teriparatide are two commercially avail-

able drugs that have been investigated as potential can-
didates in the upregulation of bone healing response in
humans [28]. Their background in terms of pre-clinical
and experimental evidence has been excellent. In
humans, teriparatide resulted in a shorter time to heal-
ing with a ‘richer’ callus formation when used for the
treatment of distal radial fractures [28]. These results,
however, are rather weak and, according to the authors,
they should be interpreted with caution and warrant fur-
ther validation with more studies. Similarly, the use of

Chrysalin for unstable displaced distal radial fractures
demonstrated a shorter time to the radiologic consolida-
tion of the fractures but no differences in terms of cast
removal, range of motion, grip strength and VAS or
DASH scores [107]. Therefore, one could hypothesise that
the ‘exceptional’ results seen in the experimental animal
models cannot be directly translated in clinical practice, at
least as yet. It could be speculated that the differences in
bone healing biology are responsible for these compelling
results. In addition, differences in the study objectives in
humans and animals are evident. The available in vitro
and in vivo animal studies have limited their focus on the
global osteogenic output. However, clinical studies are not
limited to the radiologic appearance, but also several other

Table 3 Available clinical studies on the effect of peptides on bone healing

Study, Year Peptide used Clinical application Result

Yukna et al., 1998 [115] P-15 Periodontal osseous defects
in 33 patients

• P-15 combined with anorganic bone matrix (ABM) yields
better clinical results than freeze-dried bone allograft or
open flap debridement

Yukna et al., 2000 [114] P-15 Periodontal osseous defects
in 33 patients

• P-15 combined with ABM yields better clinical results than
the ABM alone

Yukna et al., 2002 [122] P-15 Infra-bony periodontal defects
in 25 patients

• Favourable 3-year results with P-15 combined with ABM
suggest that it may have a beneficial effect long-term

Yukna et al., 2002 [109] P-15 Periodontal regeneration case
report

• Uneventful results with no evidence of root resorption,
ankylosis or untoward inflammation

Degidi et al., 2004 [128] P-15 Maxillary sinus augmentation
in 7 patients

• Bone-replacement materials, without the addition of autologous
bone, could be equally effective sinus augmentation

Gelbart et al., 2005 [110] P-15 Sinus floor augmentation in
12 patients

• New trabecular bone is formed after grafting P-15 combined
with ABM in the sinus floor

Philippart et al., 2005 [130] P-15 Maxillary sinus floor grafting
performed on 3 patients

• High degree of inorganic xenograft integration and natural
bone regeneration

Gomar et al. 2007 [236] P-15 Non-unions and delayed union
in 22 patients

• Full consolidation was achieved in 90 % of the cases
• Safe, economical and clinically useful alternative to autograft
in the repair of un-united fractures

Kasaj et al., 2008 [127] P-15 Infra-bony periodontal defects
in 26 patients

• Significantly improved clinical outcomes compared to open
flap debridement

Butz et al., 2011 [116] P-15 Sinus floor augmentation in
24 patients

• All implants placed in the augmented sites integrated and
were restored prosthetically

Emam et al., 2011 [117] P-15 Sinus floor augmentation in
24 patients

• PepGen P-15 putty was found to be a promising osteoconductive
graft for sinus augmentation, supporting immediate placement
of implants

Aspenberg et al., 2010 [33] Teriparatide Distal radial fractures in
27 patients

• The results must be interpreted with caution
• Radiographic quality at an early time point might be a sensitive
variable, perhaps better than time to cortical continuity

• Teriparatide appeared to improve early callus formation in distal
radial fractures

Aspenberg et al., 2010 [28] Teriparatide Distal radial fractures in
102 patients

• Shortened time to healing for teriparatide group compared with
placebo

• These results should be interpreted with caution and warrant
further study

Chintamaneni et al., 2010 [34] Teriparatide Sternal fracture non-union • Consolidation of fracture

Oteo-Alvaro et al., 2010 [36] Teriparatide Humeral shaft non-union
case report

• Consolidation of fracture

Chrysalin trial [106] Chrysalin Distal radial fractures in
274 patients

• Statistically significant shorter time to the radiologic consolidation
of the fractures but no differences in terms of the range of motion,
grip strength and VAS or DASH scores
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parameters such as time for cast removal, range of mo-
tion, VAS or DASH scores, etc. It could be of speculation
that a more radiologically rich callus formation is not
necessarily associated with a better clinical outcome
(Table 3). In addition, the potency of these peptides in
humans and animals, as well as their stability and delivery
challenges, are currently not fully understood.
PepGen P-15 is another commercially available peptide

that has been investigated in periodontal osseous defect
models with favourable results. The vast majority of the
available evidence comes from small osseous defects
seen in dental and maxillofacial surgery (Table 3). There
is limited evidence for long bone bony defects or non-
unions. In the largest case series, PepGen P-15 contain-
ing bone graft substitutes were used in 22 patients with
non-uniting fractures [236]. According to the authors,
PepGen appeared to offer a safe, economical and clinic-
ally useful alternative to autologous grafting. However,
additional randomized clinical studies are needed to de-
fine its effectiveness in this setting. In a similar note, the
effectiveness of PuraMatrix warrants further clinical in-
vestigation as, although commercially available, its po-
tential effectiveness for bone healing and regeneration is
only limited to in vitro or animal studies.
One avenue that warrants further investigation in-

cludes the combination of cell binding peptides with
sub-functional doses of BMPs [197, 248]. As shown, for in-
stance, by Visser et al. [248], when an absorbable collagen
type I sponge functionalized with a synthetic collagen-
targeted RGD containing low doses of BMP-2, ectopic
bone formation was observed in rats. These low
BMP-2 levels would have no significant effect if ap-
plied on their own.
Further research in the nanoscale phenomena govern-

ing biological materials and the heterojunction between
cells and substrate could allow osteoinductive implants
coupled with osteoconductive properties. Small mole-
cules such as peptides could have a role to play in sup-
porting and guiding the overall osteogenic response in
such scenarios. Overcoming the peptide stability issues
against proteolysis, which result in a short duration of
activity and low bioavailability, is also crucial. In this
context, expansion of our methodology for peptide de-
signs with further research on ways to improve the in-
corporation of non-natural amino acids, cyclization and
stable peptide bond engineering are crucial. The devel-
opment of improved peptide motifs that could increase
the osteogenic response in a compromised bone healing
environment rather than cause an upregulation of the
osteoblastic output, should further be explored. Another
area of interest is the utilization of a ‘polytherapy’, i.e. the
combination of several peptides targeting either a
specific cell line or a specific phase of bone healing.
Such an approach would, for instance, employ an

osteoinductive peptide coupled by a peptide promoting
the osteogenic or chondrogenic response. Scaffold tech-
nologies enabling a timed controlled release of such
molecules could provide the right signals at the exact
phase of the bone healing pathway. Therefore, further
persistence in the design of peptide-scale molecules cap-
able of targeting the upregulation of osteogenesis or
form functional, structurally complex and well-defined
scaffolds will lead to future clinical treatment modalities
ranging from tissue replacement to tissue regeneration.

Conclusion
A significant number of peptides have been developed and
investigated as potential candidates for the upregulation of
bone healing response. In vitro and experimental animal
models have been favourable, however, limited clinical evi-
dence exists. Maturation of our knowledge in this field will
give rise to novel biologically-derived molecules for appli-
cations in the clinical setting in cases where bone healing
and bone regeneration are needed.
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