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Abstract

Background: Faecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile
infection (rCDI). It restores the disrupted intestinal microbiota and subsequently suppresses C. difficile. The long-term
stability of the intestinal microbiota and the recovery of mucosal microbiota, both of which have not been previously
studied, are assessed herein. Further, the specific bacteria behind the treatment efficacy are also investigated.

Methods: We performed a high-throughput microbiota profiling using a phylogenetic microarray analysis of 131 faecal
and mucosal samples from 14 rCDI patients pre- and post-FMT during a 1-year follow-up and 23 samples from the

three universal donors over the same period.

Results: The FMT treatment was successful in all patients. FMT reverted the patients' bacterial community to become
dominated by Clostridium clusters IV and XIVa, the major anaerobic bacterial groups of the healthy gut. In the mucosa,
the amount of facultative anaerobes decreased, whereas Bacteroidetes increased. Post-FMT, the patients’ microbiota
profiles were more similar to their own donors than what is generally observed for unrelated subjects and this striking
similarity was retained throughout the 1-year follow-up. Furthermore, the universal donor approach allowed us to
identify bacteria commonly established in all CDI patients and revealed a commonly acquired core microbiota

consisting of 24 bacterial taxa.

Conclusions: FMT induces profound microbiota changes, therefore explaining the high clinical efficacy for rCDI. The
identification of commonly acquired bacteria could lead to effective bacteriotherapeutic formulations. FMT can affect
microbiota in the long-term and offers a means to modify it relatively permanently for the treatment of microbiota-

associated diseases.
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Background

The incidence of Clostridium difficile infections (CDI)
has increased, with up to 50 % of patients developing re-
current infections [1, 2]. The bacterium is the main etio-
logical agent of antibiotic-associated diarrhoea, causing a
major burden to the healthcare system [3-5]. Diverse
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intestinal microbiota provides colonisation resistance
against pathogens and perturbations to the normal
microbiota introduced by an antibiotic treatment is a
key step in CDI pathogenesis [5]. Traditionally, CDI is
treated with metronidazole or vancomycin and, more
recently, with fidaxomicin and rifaximin [2, 6, 7]. These
antimicrobials devastate the intestinal microbiota even
further. If C. difficile spores persist after antibiotic treat-
ment they can germinate and proliferate in the absence
of suppressing microbiota and, as a consequence, the pa-
tient may enter a vicious cycle of recurrent CDI (rCDI)
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infections [8]. Further, the emerging antibiotic-resistant
variants of C. difficile call for alternative treatment op-
tions [9].

Faecal microbiota transplantation (FMT) is highly ef-
fective in treating rCDI [10-13]. FMT from a healthy,
pre-screened donor is placed into the patient’s duode-
num, cecum or rectum where it restores the diversity
and composition of the disrupted microbiota and subse-
quently suppresses C. difficile [9, 11-18]. Emerging evi-
dence suggests that FMT also restores secondary bile
acid metabolism, which is impaired in rCDI and possibly
has a role in disease development [19, 20]. Several stud-
ies have followed the short-term stability of the trans-
planted microbiota and constituted that, overall, FMT-
induced changes tend to persist over time [14, 16, 17].
Further, FMT’s long-term clinical efficacy and safety
have been demonstrated [10, 11, 21]. However, the long-
term effects of FMT on microbiota have not been previ-
ously addressed, with prior work focusing on the effects
on faecal microbiota rather than on the distinct ecosys-
tem of mucosa.

Understanding the mechanistic basis of FMT treat-
ment and the minimum microbial components neces-
sary for a successful outcome are vital. Preliminary
studies have been conducted, with evidence from a rCDI
mouse model suggesting that a mixture of intestinal bac-
teria could be used instead of faecal material [22]. More
recently, bacterial mixtures comprising over 30 strains
were shown to resolve rCDI in two patients [23]. These
results suggest that an effective treatment of CDI based
on defined mixtures of bacteria might be feasible in the
near future.

In this study, we aimed to build on the existing know-
ledge by concentrating on the long-term effects of FMT
on the faecal microbiota as well as characterising rectal
mucosal microbiota pre- and post-treatment. We used a
universal donor approach, where several patients re-
ceived their transplant from the same donor. This facili-
tated a controlled analysis of FMT-induced microbiota
changes and the identification of key bacterial taxa that
are commonly established in the gut of CDI patients.
Thereby, we aimed to investigate the possibility of a
commonly acquired core microbiota underlying the
efficacy of the FMT treatment and which could be used
as a basis for the design of bacteriotherapeutic
formulations.

Methods

Patients

The intestinal microbiota of 14 rCDI patients treated
with FMT was analysed (Table 1; see the Additional file
1: Table S1 for detailed patient information and Fig. 1
and Additional file 1: Figure S1 for sample collection).
All patients had laboratory-confirmed rCDI despite
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Table 1 Patient demographics

Patient no. Age, years  Sex Donor  Faecal material  Outcome
P1 63 Male D2 Frozen Resolution
P2 45 Male D2 Frozen Resolution
P3 88 Female D2 Frozen Resolution
P4 82 Female D2 Frozen Resolution
P5 81 Female D2 Frozen Resolution
P6 58 Female D3 Fresh Resolution
p7 67 Male D1 Fresh Resolution
P8 31 Female D3 Frozen Resolution
P9 35 Female D3 Fresh Resolution
P10 81 Male D3 Fresh Resolution
P11 80 Female D3 Frozen Resolution
P12 20 Female D3 Frozen Resolution
P13 57 Female D2 Frozen Resolution
P14 44 Female D3 Frozen Resolution

antimicrobial treatment and were refractive to standard
therapy. One patient, P13, received FMT after one re-
lapse only. She had previously suffered from three CDIs
during the past 3 years, always coinciding with antibiotic
treatment for other indications. The latest C. difficile in-
fection started after a course of doxycycline and, due to
the patient’s history, FMT was considered as a suitable
treatment and the patient was included in the study.
The previously described clinical inclusion and exclusion
criteria were followed [21]. The study was approved by
the Ethics Committee of Hospital District of Helsinki
and Uusimaa Finland (DnroHUS124/13/03/01/11). Pa-
tients were informed about the possible risks of FMT
and they all provided informed consent.

Donors and preparation of faecal transplants

Three healthy Finnish females, aged 35-42 years and
with a normal body mass index (average 23.5, SD =2.1)
acted as universal faecal donors (D1-D3) and provided
follow-up faecal samples (Fig. 1). The donors were
screened as described previously [11]. In short, they did
not have any gastrointestinal symptoms, had not taken
antibiotics for the past 6 months, and were negative in
C. difficile culture and toxin A/B test. They were also
negative for growth on selective culture for enteric bac-
terial pathogens and light microscopy on ova and para-
sites from faeces and as well tests for HBV, HCV, HIV-1,
HIV-2 and Treponema pallidum from serum. Further
tests included total blood count, C-reactive protein, cre-
atinine and liver enzyme levels from blood.

The preparation of faecal suspensions for immediate
use and for freeze-storing at —80 °C was performed as
described recently by using 30 g of faecal material [21].
The patients received an infusion of either fresh faeces
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Fig. 1 Study design. Four to eight faecal samples were collected
from 14 patients and three donors over the 1-year study period, in
addition to two biopsy samples (from 10 patients only). F faecal
sample, B biopsy sample

or previously frozen sample (Table 1). The frozen donor
samples were stored at -80 °C for a maximum of
4 months prior to transplantation.

Faecal microbiota transplantation

The patients were treated with vancomycin pre-FMT
and the medication was discontinued in average 36 hours
prior to treatment. Patients cleansed their bowels before
EMT with polyethylene glycol [11, 21]. The faecal sus-
pension was infused into the cecum. Patients were ad-
vised to contact the hospital if they had diarrhoea or
other symptoms after FMT. Persisting diarrhoea with a
positive C. difficile toxin stool test was considered as a
treatment failure. The patients came for the second bi-
opsy 1 month after the FMT (bowel not cleansed). In
addition, the patients were paid a home visit 2 months
after the transplantation and twice more during the 1-
year follow-up period to collect the stored faecal sam-
ples, which were kept in their home freezers at —20 °C
for 4 months.

Samples and DNA extraction

The baseline faecal samples were taken before the colon-
oscopy at home by the patients and brought to the
clinic. The follow-up samples were frozen at -20 °C im-
mediately after defecation and stored in the patients
home freezers for maximally 4 months until transfer to
the laboratory for further analysis. Rectal biopsies were
taken from the patients during the FMT (B0) and at
1 month post-FMT (B1l) by proctoscopy (bowel not
cleaned) and stored at —80 °C until further processing.
The patients and donors collected the baseline (FO) and
follow-up (F1-F7) faecal samples (Fig. 1). Microbial
DNA from patients (n=131) and donors (n=23) was
extracted as described previously for biopsies and faecal
samples according to current standard operation proce-
dures, including a mechanical disruption of bacterial
cells [24-26].

Microbiota analysis

Microbiota analysis was conducted with a benchmarked
and validated phylogenetic microarray [27-30]. It covers
the V1 and V6 hypervariable regions of the 16S rRNA
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gene and targets over 1000 bacterial taxa detected in the
human GI tract covering the major species. The raw sig-
nal intensities were normalised as described previously
[29]. For faecal samples, the technical replicates with
correlation over 0.96 were accepted for further analysis,
and for biopsies and pre-FMT samples a slightly lower
quality (over 0.95) was accepted due to the low micro-
bial diversity in the samples. Pre-FMT samples from P13
did not meet these quality standards and were excluded
from the analysis. The raw signal intensities were nor-
malised as described previously and min-max algorithms
were used for the between sample normalisation [29].
The probe-signal intensities were summarised to 130
genus-like and 22 phylum-like taxonomic groups.

The adherence of bacteria from donor faeces to 7-day-
old Caco-2 cells was conducted as described previously
[31] and detailed in Additional file 1. The amounts of
adhered bacteria were analyzed with MiSeq sequencing
of the 16S rRNA gene (detailed in Additional file 1).

Statistical analysis

All data analyses were carried out with logarithm-
transformed data and performed using R (version 3.1.1).
The similarity of the microbiota was determined using
Spearman’s rank correlation (p). In the analysis compar-
ing the similarity of patients’ microbiota and their own
donors, subject P13 was excluded due to both Crohn’s
disease and multiple antibiotic treatments during the
follow-up period. Microbial diversity, a measure of mi-
crobial richness and evenness, was calculated by using
the inverse Shannon diversity index. The variation in the
data was visualised with principle component analysis
(PCA). The differences between time points, similarity
and diversity were tested with analysis of variance
(ANOVA) with Tukey’s honest significant differences
post hoc analysis. The changes in the individual bacterial
taxa between time points were assessed with a linear
mixed model. All resulting P values were adjusted for
multiple comparisons using Benjamini—Hochberg false
discovery rate and P values below 0.05 were considered
significant. The microbial profile separating the pre- and
post-FMT groups was identified with redundancy ana-
lysis using bootstrap aggregation (baggedRDA) as de-
scribed previously [32]. In determining the therapeutic
core, a detection threshold of < 2.9 log10 intensity, corre-
sponding to approximately 0.13 % relative abundance
from the total bacterial amount, was used here.

Results

FMT resolved rCDI and restored healthy microbiota
profiles in patients

The FMT treatment cleared rCDI from all patients. A
single individual (P3) mistakenly restarted vancomycin
after transplantation and developed CDI. She was
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treated successfully with a second FMT and remained
asymptomatic throughout the follow-up period (for de-
tailed analysis see Additional file 1: Figure S2).

The donors’ microbiota was typical for healthy adults
[28, 33-35], dominated by Firmicutes (85.0 %), Actino-
bacteria (8.5 %) and Bacteroidetes (5.3 %) (Fig. 2a) and
showed significant individual-specific profiles. In con-
trast to the healthy donors, the patients’ microbiota pre-
FMT was extremely different. At the highest taxonom-
ical level, 14 out of the 23 detected phylum-like taxa dif-
fered significantly between the donors and pre-FMT
patients (P <0.05, Fig. 2a). The low levels of Clostridia
and high levels of Bacilli and Proteobacteria contributed
to the majority of the detected differences. When deter-
mining the genus-like taxa separating the pre-FMT pa-
tients and donors, we found 69 taxa to be significantly
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differently abundant in these two groups (Additional file
1: Table S2). Among them, there were 15 genus-like taxa
that were increased in abundance by over 10-fold, in-
cluding bacteria related to Coprococcus eutactus (fold
change (FC) = 24.71, P < 0.05), Ruminococcus obeum (FC
=23.05, P<0.05) and Subdoligranulum variable (FC =
2221, P<0.05). Additionally, two genus-level taxa
decreased drastically in abundance after FMT, ie.
bacteria related to Lactobacillus plantarum (FC=
-24.18, P < 0.05) and Veillonella (FC = -40.64, P < 0.05).
There was a dramatic difference in both diversity and
microbiota composition after the FMT-treatment. The
patients’ microbial diversity increased significantly as
early as 3 days post-FMT to resemble the donors and
remained in this range for up to 1 year (Fig. 2c). A simi-
lar trend was observed with the microbial composition,
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Fig. 2 Donors’ microbiota and alterations in the patients’ faecal and mucosal microbiota before and after faecal microbiota transplantation (FMT)
treatment. a The average microbial composition in faecal samples (see panel d for bacterial groups). Donors’ microbiota shown as average from all
time points. b Principle component analysis (PCA) from genus level bacterial groups in faecal samples; donors' samples in dark blue, patients’ pre-FMT
samples coloured red and post-FMT samples coloured turquoise. ¢ Microbial diversity in faecal samples measured from patients and donors (average
from all time points), statistical significance from other time points indicated with an asterisk. d The average microbial composition in patients’ mucosal
samples. e PCA from genus level bacterial groups in patients’ mucosal samples, pre-FMT samples coloured red (patients with one sample n=13 and
patient P3 with 2 samples, see Additional file 1: Table S1) and post-FMT samples (patient n = 11) coloured turquoise. f The fold change of genus level
bacterial groups was significantly different in the pre- and post-FMT mucosal samples. d Phylum level taxonomy
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where patients’ microbiota post-FMT resembled that of
the donors throughout the follow-up period (Fig. 2a).
This compositional shift is also seen from the unsuper-
vised PCA plot, where 36 % of the microbial variation
was introduced by the treatment (Fig. 2b). There was no
significant difference between any of the follow-up sam-
ples or healthy controls in the PCA.

FMT-induced microbiota changes in the mucosal surface
Microbiota changes in the intestinal mucosa of CDI pa-
tients have not been previously addressed. Interestingly,
the changes of microbial profiles from rectal biopsies be-
fore and after FMT-treatment were different than what
was observed in the faecal samples. The pre-treatment
mucosal sample was significantly enriched with mem-
bers of Clostridium cluster IX, Proteobacteria, Bacilli
and uncultured Clostridiales, which were reduced post-
FMT, whereas Bacteroidetes were increased after treat-
ment (all, P < 0.05, Fig. 2d). Furthermore, when analysing
the effect of FMT on the genus-level taxa, there was a
significant difference between pre- and post-treatment
groups, which were separated in PCA (P < 0.05, Fig. 2e).
The separation was caused by 15 genus-level taxa
(Fig. 2f). The largest difference was introduced by the
2.7-fold increase of the members of Bacteroidetes
phylum, including Bacteroides vulgatus- and Prevotella
oralis-related taxa after FMT, whereas members of the
Proteobacteria phylum were decreased on average by
4.6-fold and bacteria related to Clostridium cluster IX,
such as Veillonella spp., decreased. A baggedRDA ana-
lysis further supported the observed differences in the
mucosal microbiota before and after FMT and confirmed
that Proteobacterial and Clostridial species are decreased
and the Bacteroidetes species are enriched after the
EMT (Additional file 1: Figure S3). Surprisingly, FMT
did not increase microbial diversity in the mucosa
(Additional file 1: Table S3).

To analyse the adherence of donor faecal bacteria to
intestinal epithelium in vitro we studied the most fre-
quently used donor D3 and allowed the faecal sample to
bind to the Caco-2 cell culture. The attached bacteria
were analysed using 16S rRNA sequencing. Previously,
high-throughput sequencing and the microarray plat-
form used in this study have been shown to produce
comparable data, particularly at high taxonomic level
[30] and, therefore, we considered that it is adequate to
analyse the Caco-2 adherent phyla with MiSeq sequen-
cing. Interestingly, the in vitro result replicated our in
vivo findings of increased levels of Bacteroidetes in the
mucosa by showing a drastic decrease of the Firmicutes/
Bacteroidetes ratio from 31.31 to 7.45 in the faecal and
Caco-2 adhered samples, respectively. This further sug-
gests that specific bacteria from the faecal material are
selected to the mucosal compartment.
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Donor-specific microbiota established in the patients and
retained for up to 1 year post-FMT

One of the main aims of this work was to evaluate the
long-term persistence of the transplanted microbiota. To
address this, we calculated the Spearman correlations
measuring microbial similarity between three groups,
namely the similarity between the donated sample and
its recipient, the donors within-subject similarity against
the donated sample over time, and similarity between
the patient and other donors of the study. The high
similarity between patients’ and their donated sample
throughout the follow-up period was striking (Fig. 3a).
As early as 3-days after the treatment there was a 95.0 %
similarity between the patients’ microbiota and the do-
nated faeces, compared to the 81.8 % similarity pre-FMT
(P <0.05). Importantly, similarity to the other donors
was significantly lower than to the own donors (P < 0.05)
and, furthermore, this similarity was retained throughout
the study period (Fig. 3a). In addition, the overall simi-
larity between the patient—donor pairs (average 95.3 %)
was found to be remarkably higher than what is gener-
ally observed for unrelated individuals determined using
the same analysis pipeline (average 77.4 %, P < 0.05) [25,
28, 34-36]. Analysis of the microbiota stability at indi-
vidual level showed that it had high resilience after FMT
and, in three out four patients receiving antibiotics
during the follow-up period, the microbiota was able to
recover from the occasional antibiotic treatment for
other indications (Additional file 1: Figure S4). As an
exception, P13, who has Crohn’s disease and received
three courses of antibiotics, both of which are known to
affect microbiota, had reduced stability (Additional file
1: Figure S4) and was therefore excluded from the
cohort stability analysis.

Due to the high similarity between the donors and
their patients, we investigated the possibility of microbial
signatures in the patients that would be specific to their
own donor. Using baggedRDA, we found that the pa-
tients could be separated according to their donor and
observed 24 genus-like taxa to cause this separation
(Fig. 3b). For example, bacteria related to Faecalibacter-
ium prausnitzii, Ruminococcus lactaris and Collinsella
were increased in the patients from D3. These signatures
remained throughout the follow-up period.

Commonly acquired bacterial taxa

The universal donor approach of this study allowed
identification of similarities introduced by the FMT.
More specifically, we were able to identify genus-like
bacterial taxa that were absent in the patients prior to
treatment but introduced to the patients post-FMT
(Fig. 4a). Each donor and their patients were first com-
pared separately to achieve the donor-specific trans-
planted core microbiota. We then compared the three
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donor-specific cores (Fig. 4b) and found that 24 genus-
like taxa from four phylum-like groups were absent in
patients prior to FMT and introduced by the treatment
to at least two out of the three donors (Fig. 4b). Fifteen
of these taxa were present in all patients after treatment.
The commonly acquired bacteria included some well-
studied butyrate producers such as Eubacterium hallii
and Roseburia intestinalis.

Discussion

Our study addressed the microbiological mechanisms
underlying the FMT treatment for rCDI. We showed,
for the first time, that FMT has long-term effects on the

microbiota and offers a means to modify it relatively per-
manently. The rapid changes induced by FMT explain
the prompt and high clinical efficacy — it drastically
altered the patients’ intestinal microbiota by restoring
the anaerobic community. Patients’ faecal microbiota
prior to FMT was dominated with facultative anaerobic
bacteria such as Bacilli and Proteobacteria, which are
known for their proinflammatory properties [37]. Post-
FMT, their microbiota composition resembled that of
the donors as early as 3 days following transplantation,
containing bacteria typical for a healthy microbiota such
as strict anaerobes from the Clostridium clusters IV and
XIVa. These observed changes confirmed previous
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bold text were increased in all patients and the others were increased in patients from two out of three donors. *The bacteria belonging to C.
difficile group include eight commensal species and uncultured representatives (see Additional file 1), which produced the detected signal. C.
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findings [14, 38] and, importantly, we were able to show
that these modifications persisted long-term. We also
addressed the effects induced by FMT on the rectal mu-
cosa, which have not been studied previously. Further-
more, our universal donor approach allowed the
identification of commonly acquired bacterial taxa, po-
tentially underlying the treatment efficacy.

Antibiotics suppress anaerobic commensals and induce
profound changes to microbiota, resulting in loss of col-
onisation resistance [39, 40]. We observed a similar effect
in patient P3, who mistakenly took vancomycin after the
first FMT. The transplanted microbiota was unable to en-
graft and there was no change in the microbial compos-
ition before the second FMT treatment. We also showed
that the patients’ microbiota composition pre-FMT repre-
sents the effects of multiple antibiotic treatments, includ-
ing low diversity and depletion of anaerobes. The FMT-
treatment restored these levels very rapidly.

The novel mucosal microbiota findings showed that
similar to the faecal microbiota, FMT restored the an-
aerobic bacterial community due to the increase of Bac-
teroidetes. The faecal and mucosal tissues are distinct
communities and have specific microbial compositions
[41, 42]. Therefore, it was not surprising that a sub-
population of the transplanted microbiota was selected
to the mucosal compartment. Further, our in vitro ex-
periment showed that the epithelium-adherent fraction
of faecal microbiota was enriched in Bacteroidetes. This
group is abundant in the healthy intestinal mucosa and
is known to enforce epithelial integrity [43] and main-
tains immunological homeostasis [44, 45]. Thus, it can
be hypothesised that the increase of Bacteroidetes in the
mucosa was part of the efficacy of the FMT treatment.

One of the main findings of this study was the high
similarity in the microbiota profiles between patients
and their own donors that lasted throughout the 1-year
follow-up. This was not altered even by antimicrobial
treatments taken by some patients during the follow-up
period. The microbial stability was effected by the antibi-
otics, but it recovered to its original composition, in line
with recent observations with healthy subjects [40]. Re-
gardless of the antibiotics, we were able to identify spe-
cific donor-derived bacterial signatures, which persisted
throughout the follow-up. This surprisingly high similar-
ity between the donor-patient pair led us to speculate
that there is no major selection pressure from the host
to alter the transplanted microbial composition. The hy-
pothesis could be that the transplant provides a func-
tional microbial ecosystem, which outweighs the
individual-based bacterial selection.

Previously, three FMT-trials have addressed the
engraftment of donors’ microbiota in patients, with
shorter 4- to 6-month follow-up periods and less de-
tailed microbial analysis [17, 38]. Our comprehensive
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investigation extends the previous preliminary observa-
tions on the establishment of donors’ microbiota post-
FMT; both the high patient—donor similarity and the
donor-specific bacterial signatures in patients indicate a
long-term establishment of the donors’ microbiota. This
is in line with a recent metagenomics study that revealed
colonisation of donor bacteria at strain level persisting
for 3 months after FMT treatment [46]. Since one of the
characteristics of a healthy microbiota is its resilience to
change [35], it was unexpected that the donors’ micro-
biota was so strongly established and maintained. Our
hypothesis is that the depletion of the microbiota with
broad-spectrum antibiotics and bowel cleansing creates
an open ecological niche for the transplanted micro-
biota. This novel finding on the long-term stability is
promising when considering other indications where
changing the intestinal microbiota composition could be
used as a potential treatment.

One of our main aims was to determine a group of
bacteria necessary for the resolution rCDI. This was ad-
dressed by the universal study setup, where faecal prepa-
rations from three donors were used to treat several
patients, allowing better evaluation of the commonly ac-
quired bacteria, which were transferred to all patients.
We identified 24 bacterial taxa that were absent in pa-
tients before the treatment and present afterwards. Thus,
it would be plausible to hypothesise that such a specific
subpopulation within the complex faecal microbiota
could underlie the treatment efficacy of FMT for rCDL
This commonly acquired core identified in our study
was taxonomically diverse and included bacterial genera
from four major phyla. The therapeutic core determined
in our study showed considerable overlap with health-
associated microbial cores determined in other studies
[47], highlighting its potential in restoring health.

The impact of these 24 taxa to intestinal health poten-
tially lies in their ecological functions and nutrient utilisa-
tion networks as well as immunomodulatory capacity.
One of these genera, Bacteroides spp. has been previously
found to increase significantly after FMT for rCDI and to
have a key role in restoring the intestinal ecosystem [14].
Our findings on the increase of Bacteroides spp. in the
mucosa also underline their importance in maintaining in-
testinal homeostasis. There is evidence that the human
commensal B. fragilis fortifies epithelial integrity [43] and,
more recently, the bacterium was shown to interact with
intestinal mucosa to suppress inflammation [48]. Further-
more, mice studies have shown that the Bacteroidetes taxa
are required in successful colonisation of a health-
associated Faecalibacterium prauznitzii [49).

The majority (22/24) of the commonly transplanted
bacterial taxa belonged to three Clostridium clusters
(Firmicutes). The Clostridium taxa of the therapeutic
core have been shown to play key roles in the nutrient
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utilisation networks and, therefore, can be considered to
be essential for the general restoration of the complex
ecosystem [50-52]. For example, the therapeutic core
bacteria Eubacterium, Coprococcus, Anaerostipes and
Ruminococcus spp. are known to participate in bacterial
cross-feeding pathways that are responsible for the pro-
duction of short-chain fatty acids (SCFA) — the major
microbial metabolites from carbohydrate fermentation
[50]. Concurrently, with the appearance of the thera-
peutic core taxa, we also observed a more than 20-fold
increase in Ruminococcus obeum and Subdoligranulum
variable, both of which are major SCFA-producing bac-
teria in the gut [50]. SCFAs promote intestinal homeo-
stasis by both strengthening epithelial cell layer integrity
and stimulating regulatory T cells [53]. Recently, Atara-
shi et al. [54] treated inflammatory colitis in a mouse
model with a combination of 17 clostridial strains, which
affected SCFA and regulatory T cell levels.

In summary, the therapeutic core seems to consist of in-
testinal bacteria that are able to regenerate key interaction-
networks within the microbiota and consequently restore
the complex intestinal ecosystem that carries out essential
functions for the host and provides colonisation resistance
against pathogens, especially C. difficile. Therefore, isola-
tion and characterisation of these commensal bacteria
would be of high importance when developing microbiota-
based therapies for rCDI. We consider that there are mul-
tiple alternatives to combine intestinal bacterial strains as
an effective bacteriotherapy mixture.

Conclusions

The microbiota changes both in faeces and mucosa
explain the rapid clinical recovery of all patients and the
superior long-term efficacy over previous antibiotic
treatments. Our results indicate that a specific combin-
ation of bacterial taxa seems to underlie the treatment
efficacy of FMT for rCDI. This is the first study to show
that subject’s microbiota could be modified in the long-
term to resemble that of the donor. Currently, FMT
treatment is considered for several other indications
than just the treatment of rCDI. Therefore, our findings
give insights into the possibilities of reshaping patients’
microbiota relatively permanently.
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