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Abstract

Background: Obesity is an escalating health problem worldwide, and hence the causes underlying its
development are of primary importance to public health. There is growing evidence that suboptimal intrauterine
environment can perturb the metabolic programing of the growing fetus, thereby increasing the risk of developing
obesity in later life. However, the link between early exposures in the womb, genetic susceptibility, and perturbed
epigenome on metabolic health is not well understood. In this study, we shed more light on this aspect by
performing a comprehensive analysis on the effects of variation in prenatal environment, neonatal methylome,
and genotype on birth weight and adiposity in early childhood.

Methods: In a prospective mother-offspring cohort (N = 987), we interrogated the effects of 30 variables that
influence the prenatal environment, umbilical cord DNA methylation, and genotype on offspring weight and
adiposity, over the period from birth to 48 months. This is an interim analysis on an ongoing cohort study.

Results: Eleven of 30 prenatal environments, including maternal adiposity, smoking, blood glucose and plasma
unsaturated fatty acid levels, were associated with birth weight. Polygenic risk scores derived from genetic
association studies on adult adiposity were also associated with birth weight and child adiposity, indicating an
overlap between the genetic pathways influencing metabolic health in early and later life. Neonatal methylation
markers from seven gene loci (ANK3, CDKN2B, CACNA1G, IGDCC4, P4HA3, ZNF423 and MIRLET7BHG) were significantly
associated with birth weight, with a subset of these in genes previously implicated in metabolic pathways in
humans and in animal models. Methylation levels at three of seven birth weight-linked loci showed significant
association with prenatal environment, but none were affected by polygenic risk score. Six of these birth weight-
linked loci continued to show a longitudinal association with offspring size and/or adiposity in early childhood.
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Conclusions: This study provides further evidence that developmental pathways to adiposity begin before birth
and are influenced by environmental, genetic and epigenetic factors. These pathways can have a lasting effect on
offspring size, adiposity and future metabolic outcomes, and offer new opportunities for risk stratification and
prevention of obesity.

Clinical Trial Registration: This birth cohort is a prospective observational study, designed to study the
developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the
identifier NCT01174875.

Keywords: Epigenome-wide association study, Offspring adiposity, DNA methylation, Prenatal environment,
Birth weight

Background
The epidemic of obesity is a major public health issue.
The risk of obesity appears to begin in utero, as a sub-
optimal intrauterine environment can have a lasting im-
pact on metabolic control [1–5]. A major mechanism by
which the effects of an adverse in utero environment ap-
pear to be transmitted is by perturbation of the off-
spring’s DNA methylome [6–8]. Because the DNA
methylome is susceptible to both genetic [9–11] and
environmental [12, 13] influences, both factors may
act during development to program pathways to obes-
ity [14]. Advances in microarray technology have
made it feasible for DNA methylation to be quantified
at multiple CpG sites across large samples, and has
paved the way for epigenome-wide association studies
(EWAS) [15].
Birth weight is often used as a surrogate outcome to

evaluate the overall quality of the in utero environment.
Firstly, both low and high birth weights have been impli-
cated in childhood and adult onset of chronic diseases
such as obesity, impaired glucose tolerance, type 2
diabetes mellitus (T2DM) and coronary artery disease
[16]. Secondly, modifiable prenatal environmental factors
(themselves being determinants of the intrauterine envir-
onment), such as maternal obesity and dietary intake, have
been linked with birth weight [17]. Thirdly, there is
evidence to suggest that birth weight and metabolic
diseases share some common genetic determinants [18].
To date, only four epigenome-wide studies have

been reported that examined the association between
methylation marks in neonate tissues and birth weight
[19–22], and all these studies have been conducted
on Caucasian populations. All four studies focused largely
on the associations between offspring size/adiposity and
variations in the neonate DNA methylome. The only
study [22] which included genetic information in the
analysis had a small sample size. Also, Engel et al. [19],
Haworth et al. [22] and Simpkin et al. [20] did not
consider the influence of prenatal environments on the
identified associations, while Sharp et al. [21] focused
exclusively on the contribution of maternal adiposity

(pre-pregnancy body mass index (ppBMI) and pregnancy
weight gain) to the variation in offspring’s methylome.
We previously reported that RXRA promoter methyla-

tion in umbilical cord DNA correlates with childhood
obesity in replicate cohorts, and that the level of methy-
lation is associated with maternal nutrition in the first
trimester [23]. Using a candidate gene approach, we also
reported that umbilical cord DNA methylation in the
hypoxia inducible factor 3A (HIF3A) gene (a gene previ-
ously associated with adult adiposity [24]) associates
with infant weight and adiposity [25]. It follows that
epigenetic alterations associated with the development
of adiposity may arise during in utero development.
These findings, along with previous findings on the influ-
ence of SNPs and in utero environment on the epigenome
[14], prompted an EWAS to be performed to comprehen-
sively search for DNA methylome changes in utero in re-
sponse to variations in prenatal environments and genotype.
In the current study we take a comprehensive ap-

proach to understand the genesis of adiposity in early
life by interrogating the effects of prenatal environment,
genotype and DNA methylation, and we report four im-
portant findings. First, we identify prenatal environments
that influence birth weight. Second, we report associa-
tions between child weight/adiposity (at birth and during
early childhood) and polygenic risk score derived from
adult adiposity genetic association studies. Third, we find
variations in the neonate DNA methylome that associate
with birth weight and size/adiposity measures in early
childhood. Last, we determine SNPs and specific pre-
natal environments contributing to this variability in the
neonate epigenome. This study is the first large sample
size EWAS (N = 987) that assesses the impact of prenatal
environment and genetic and epigenetic factors on birth
weight and size/adiposity in early childhood. It is also the
first neonate EWAS conducted in an Asian population.

Methods
Study population
This work is part of the Growing Up in Singapore
Towards healthy Outcomes (GUSTO) study, a prospective
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mother-offspring birth cohort designed to investigate de-
velopmental origins of health and disease (DOHaD). The
GUSTO cohort has been described previously [26]. Preg-
nant women of at least 18 years of age and in their first
trimester of pregnancy were recruited from the two major
public hospitals in Singapore with obstetric services (KK
Women’s and Children’s Hospital and the National
University Hospital) between 2009 and 2010. Eligible par-
ticipants were Singaporean citizens, permanent residents,
or those who planned to reside in Singapore for the next
5 years, and intended to deliver the baby at the National
University Hospital or KK Women’s and Children’s
Hospital. They could be of Chinese, Malay or Indian eth-
nicity, but with homogeneous parental ethnic background.
Women who were on chemotherapy or psychotropic
drugs were excluded from the study. Interviewer-
administered questionnaires were used to assess maternal
pre-pregnancy weight, demographics (including maternal
age and education) and maternal obstetric and medical
history at enrolment. All pregnant women underwent four
ultrasound scans during pregnancy to measure fetal
growth. Extensive maternal assessments were conducted
at 26–28 weeks gestation. All offspring were assessed at
birth and at different later time points (3, 6, 9, 12, 15, 18,
24, 36 and 48 months). This study is still active with plans
to collect data up to adolescence. This is an interim ana-
lysis on an ongoing cohort study. Of the 1177 singleton
deliveries, 987 subjects were selected as fulfilling the fol-
lowing inclusion criteria: full-term births with Apgar
score ≥ 9, and availability of at least one child weight
measurement, infant genotype and methylation data
(Additional file 1: Supplementary Figures A1–A3).

Child characteristics and anthropometry
Child weight and recumbent length/standing height
were measured at birth and at nine subsequent time
points (3, 6, 9, 12, 15, 18, 24, 36 and 48 months). Child
weight was measured using calibrated scales (birth to
18 months: SECA 334 Weighing Scale; 24 to 48 months:
SECA 803 Weighing Scale, SECA Corp) and recorded to
the nearest gram. Recumbent length (birth, 3, 6, 9, 12,
15, 18, 24 months) was measured using a SECA infant
mat (SECA 210 Mobile Measuring Mat, SECA Corp)
and recorded to the nearest 0.1 cm. Standing height (36
and 48 months) was measured using a stadiometer
(SECA stadiometer 213, SECA Corp) from the top of
the child’s head to his or her heels, and recorded to the
nearest 0.1 cm. Weight and length/height measurements
were taken in duplicates for reliability. BMI was derived
as weight (kg) divided by length2 (m2) at all time points.
Subscapular and triceps skinfolds were measured at
birth, 18, 24, 36 and 48 months, and taken in triplicate
using the Holtain skinfold callipers (Holtain Ltd,
Crymych, UK) on the right side of the body, and

recorded to the nearest 0.2 mm. Subscapular to triceps
skinfold ratio was derived by dividing subscapular skin-
fold (mm) by triceps skinfold (mm). BMI is used as a
proxy for adiposity in the analyses and to be concise, the
terms BMI and adiposity have been used interchangeably
in this study. Some caution should be exercised in inter-
preting the findings on BMI, because while BMI is
widely accepted as an indirect measure of adiposity, it
has its limitations. For example, elevated BMI levels may
arise as a result of extra muscle mass or stunted linear
growth [27]. We have also included additional analyses
using skinfolds to capture adiposity. However, skinfolds
were measured at fewer time points and were generally
associated with larger measurement error. Gestational
age (GA) was determined by ultrasonography in the first
trimester. Child sex was taken from the medical records.

Prenatal environment exposures
An interviewer-administered questionnaire was con-
ducted at 26–28 weeks of gestation to obtain informa-
tion on occupational activity during pregnancy, alcohol
usage before and during pregnancy, and smoking pat-
terns before and during pregnancy. Maternal height and
weight were measured during the same time period. Pre-
pregnancy weight was self-reported during study recruit-
ment in the first trimester of pregnancy. Gestational
weight gain (GWG) was calculated as the difference be-
tween the pre-pregnancy and 26–28 week weights. Ma-
ternal ppBMI was derived as pre-pregnancy weight
divided by height squared. Maternal glucose levels (2-h
post-glucose and fasting) were ascertained at 26–28
weeks using an oral glucose tolerance test of 75 g after
an overnight fast (8–14 hours). Maternal plasma fatty
acids, including n-6 polyunsaturated fatty acids (PUFA),
n-3 PUFA, monounsaturated fatty acids (MUFA), and
saturated fatty acids, were measured using gas chroma-
tography–mass spectrometry, and expressed as percent-
age contribution to total plasma phosphatidylcholine
(PC) fatty acid. Specifically, plasma lipids were extracted
using chloroform–methanol (2:1, v/v) and PC was iso-
lated by solid phase extraction. Fatty acid methyl esters
were generated from PC after reaction with methanol
containing 2% (v/v) sulfuric acid, extracted into hexane
and separated by gas chromatography. Fatty acid methyl
esters were identified by comparison with retention
times of previous standard runs and quantified using
ChemStation software (Agilent Technologies). Maternal
micronutrient levels (vitamin D, vitamin B6, vitamin
B12, folate, zinc, iron and magnesium) were measured
from serum drawn at 26–28 weeks of gestation. Mater-
nal calorie intake at 26–28 weeks gestation was
calculated from both 24-h dietary recall and 3-day food
diary. Maternal depressive symptoms were assessed
using the Edinburgh Postnatal Depression Scale, which
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was designed and normed expressly for depressive symp-
toms over the peripartum period [28] and is validated
for prenatal screening for depression in Singaporean
women [29, 30]. Symptoms of anxiety were assessed
using the State–Trait Anxiety Inventory [31], which is a
comprehensive and common research tool that mea-
sures both stable (trait) and more transient (state) symp-
toms. Importantly, translation and back-translation of all
questionnaires into individual languages, including
Chinese, Tamil and Malay, have been performed and
validated to ensure consistency to the English version.
This study included administration of questionnaires in
all three languages according to the language preference
indicated by the mother [32]. Birth order and mode of
delivery were extracted from hospital medical records.
We note that all prenatal exposures/factors listed here
contribute to the prenatal environment; to be concise,
we have used the term “prenatal environment” to refer
to these exposures/factors in the subsequent sections.

Infant methylation data
Methylation profiling of umbilical cord samples was
performed using the Infinium HumanMethylation450
array, following standard protocol, and processed using
in-house quality control procedure [33]. Raw methyla-
tion beta values were exported from GenomeStudio™.
Probes with less than three beads for methylated or
unmethylated channel or with detection P > 0.01 were
set to missing. Probes from sex chromosomes were
removed. Colour adjustment and normalisation of Type 1
and 2 probes was performed. Methylation beta values
were first converted to M-values before applying COM-
BAT to remove batch (plate) effects [34], and the batch-
corrected methylation values transformed back to beta
values. Finally cross-hybridising probes [35, 36], as well
as probes where the methylation range (maximum-
minimum, excluding outliers) was less than 10%, were
excluded, giving a total of 174,211 CpGs for analysis. We
did not filter the probes that were annotated to be located
within SNPs before analysis. Instead, a post-hoc analysis
was performed on the top birth weight-associated CpGs
to ensure that (1) no common SNP was located at the
CpG and the single base extension, and (2) scatterplots of
the methylation values showed a “cloud-like” distribution
and not a multi-modal distribution [37, 38].

Infant genotype data
Genotyping was performed using the Illumina
Omniexpress + exome array. Non-autosomal SNPs, SNPs
with call rates < 95%, or minor allele frequency < 5%, or
those that failed Hardy–Weinberg Equilibrium were
excluded from the analysis. Principal components analysis
was used to confirm self-reported ethnicity/ancestry.
Samples with call rate < 99%, cryptic relatedness and sex/

ethnic discrepancies were excluded. Alleles on the positive
strand were reported as per the hg19 build of the human
genome assembly. After quality control filtering 577,204
SNPs were available for downstream analysis.

Statistical analysis
The overall analysis framework is summarised in
Additional file 1: Supplementary Figure A4 and each
analysis is elaborated below. Information on covariates/
confounders was available for all 987 infants; where rele-
vant, these variables were adjusted for in the statistical
models. These variables included infant ethnicity, infant
sex, gestational age and cellular proportions (estimated
from DNA methylation data). A complete-case analysis
was conducted, i.e. for each model, all infants with
complete information for the outcome(s) and predictor(s)
were included in the analysis.

Prenatal environment influences on birth weight
Linear regression models were used to examine the asso-
ciation of 30 prenatal environment variables with infant
birth weight. Eleven of these 30 prenatal environment
variables that associated with birth weight were used for
subsequent analysis. We first separately studied the
association of each prenatal environment variable with
birth weight, adjusted for infant sex, ethnicity and GA.
This was followed by the association of prenatal environ-
ment variables with birth weight, adjusted for each other
along with infant sex, ethnicity and GA. We examined
the distribution of infant birth weight, and subsequently
decided to use a log-transformation on infant birth
weight to improve normality and reduce the impact of
outliers. Following Gelman [39], binary environment
variables were not scaled so that their estimates could be
directly interpreted. Since the unscaled binary environ-
ment variables generally have a standard deviation (SD)
of approximately 0.5, continuous prenatal environment
variables were standardised to have a SD of 0.5 (centred
and divided by two times SD), so that effect estimates
from both continuous and binary prenatal environment
variables were comparable. Note that this is different
from the Z-score, which is obtained by centring and
dividing by one SD. Due to the standardisation of prenatal
environment variables and log-transformation on birth
weight, effect estimates are interpreted as percentage
change in birth weight for a 2 SD increase in prenatal
environment variable (for continuous prenatal environ-
ment variables), or percentage change in birth weight
for comparing two categories of prenatal environment
variable (for binary prenatal environment variables).

Genetic influences on birth weight
To determine whether genetic variation at loci previ-
ously associated with adult adiposity was associated with
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newborn size/adiposity, polygenic risk score (PRS), or
cumulative genetic risk profile, was computed for each
infant in the GUSTO cohort using regression coeffi-
cients and P values for adult BMI reported by the
Genetic Investigation of ANthropometric Traits (GIANT)
consortium [40]. PRS was computed using the P value-
informed clumping procedure implemented in PLINK. To
reduce the inclusion of SNPs in linkage disequilibrium
(LD), two rounds of clumping were performed. We first
used a cut-off of R2 = 0.5 within a 250-kb window to iden-
tify potential index SNPs; in each 250-kb window, the
SNP with the smallest P value from GIANT was kept
while SNPs in LD (R2 > 0.5) were removed. Second, to fur-
ther exclude SNPs in long-range LD with potential index
SNPs, the clumping procedure was repeated with a cut-off
of R2 = 0.2 within a 5-Mbp window. For each individual,
the cumulative score was computed by summing the
number of score alleles, weighted by the regression coeffi-
cients reported by the GIANT consortium. We computed
PRS for each ethnic group separately, and at different
P value thresholds pT for the index SNPs (pT from
10–10 to 1). For each ethnic group, PRS was standar-
dised to mean 0 and variance 1 (Z-score) separately.
We then regressed PRS against log-transformed child
anthropometric measures, adjusted for child sex and
GA, for each ethnic group. We examined ethnicity-
stratified associations of PRS with child anthropomet-
ric outcomes for different P value thresholds. For
each ethnic group, we selected the P value threshold
that gave the best-fit score (defined as PRS showing
consistent associations with child weight and BMI at
multiple time points). This best-fit PRS was then used
for subsequent analysis. We did not use other child
outcomes (subscapular skinfolds, triceps skinfolds and
subscapular:triceps ratio) for evaluating the best-fit
score as these outcomes were measured at fewer time
points and generally had larger measurement error.
We also did not consider child length for evaluating
the best-fit score as it did not capture adiposity.
However, we report associations between PRS for all
child outcomes. For concision, the result sections re-
port only the conclusive findings (child weight and
BMI), while the rest (e.g. skinfolds) are provided
under Additional file 1: Supplementary File B.

Birth weight and neonatal DNA methylome
To interrogate the association between perinatal methy-
lome and birth weight, we performed linear regression
of log-transformed birth weight against methylation at
each CpG site, adjusted for child sex, GA, ethnicity, cel-
lular proportions and interactions between ethnicity and
cellular proportions. Cellular proportions for fibroblasts,
B-cells and T-cells were estimated [41] using a cell-
specific methylation profile reference panel (accession

number EGAD00010000460) [42]. A principal components
analysis was performed on the three estimated cellular pro-
portions and the first two principal components adjusted
as covariates in all subsequent regression models. Since the
associations of estimated cellular proportions with birth
weight were ethnicity dependent (data not shown), inter-
action terms between principal components of cellular
proportions and ethnicity were included as covariates in all
regression models. For sensitivity analysis, we applied an
additional method (surrogate variable analysis) to correct
for cellular heterogeneity that did not require a reference-
panel of cell-specific methylation profiles [43–45]. We fur-
ther applied genomic control to the P values if the genomic
inflation factor computed across 174,211 CpGs was greater
than 1. A genomic control correction could help correct
for residual confounding due to cellular heterogeneity;
however, it could also be too conservative, as a global infla-
tion in epigenome-wide P values in response to increased
adiposity in adults has been previously reported [46] and
could be a true biological phenomenon. To adjust for
multiple testing across 174,211 CpGs, we report all CpGs
associated with birth weight at a false discovery rate (FDR)
< 0.05 [47]. This subset of CpGs identified at FDR 0.05 was
further investigated below. For CpGs significantly associ-
ated with birth weight at FDR 0.05, we also examined if the
associations differed among the three ethnic groups by
assessing interactions with ethnicity. This analysis was
done by regression of log-transformed birth weight against
interaction terms between methylation and ethnicity,
adjusted for main effects of methylation, main effects of
ethnicity, child sex, GA, cellular proportions, and interac-
tions between ethnicity and cellular proportions. Interac-
tions with infant sex were assessed in a similar manner.

Genetic and environmental influences on top CpGs
We then characterised the influences of the prenatal
environment and SNPs on the variability in methylation
at CpGs showing association with birth weight. First, to
investigate the influence of the prenatal environment on
methylation levels, we regressed methylation at each
CpG site against (standardised) prenatal environment
variables, adjusting for child sex, GA, ethnicity, cellular
proportions and interactions between ethnicity and cel-
lular proportions. To adjust for multiple testing across
eight CpGs and 11 prenatal environments, a CpG was
defined to be influenced by the prenatal environment if
the most significant association with the prenatal envir-
onment variables had genomic control-adjusted P < 0.05/
(8 × 11) ~ 5 × 10–4. Genomic inflation factor was com-
puted for each prenatal environment across all 174,211
variable CpGs, and genomic control was applied if the
inflation factor for the variable was above 1. This simple
Bonferroni correction for multiple testing across the 11
prenatal environments was likely to be conservative as the
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11 prenatal environments were associated with one another
(for example, a mother who smokes during pregnancy is
highly likely to be smoking before pregnancy). FDR was not
used for multiple testing adjustments here and for the top
CpGs and offspring size/adiposity in early childhood be-
cause of the relatively small number of tests (88 and 360,
respectively) and dependency between the tests [48, 49].
For each CpG, we also report the prenatal environment
variable that showed the strongest association (smallest
P value) with the CpG.
Second, to interrogate the influence of SNPs on

methylation levels, we regressed each CpG against cis-
SNPs (defined here as SNPs on the same chromosome
as CpG), using an additive genetic model, adjusted for
child sex, GA, ethnicity, cellular proportions, and inter-
actions between ethnicity and cellular proportions. For
SNPs where the minor homozygote genotype group
had ≤ 50 individuals, the minor homozygote and hetero-
zygote genotype groups were combined (dominant gen-
etic model). A total of approximately 5 × 105 CpG-SNP
tests were conducted, corresponding to testing eight
CpGs across 8,392 to 47,298 cis-SNPs for each CpG
(each CpG was tested against 8,392 to 47,298 cis-SNPs
depending on the chromosome of the CpG). A CpG was
defined to be influenced by the genotype (SNPs) if the
most significant association between the CpG and cis-
SNPs attained P < 1 × 10–7, the Bonferroni threshold to
maintain a family-wise Type 1 error rate of 0.05 across
approximately 5 × 105 tests.

Top CpGs and offspring size/adiposity in early childhood
Finally, we examined whether these methylation marks
at birth were associated with offspring weight in early
childhood (3–48 months) and offspring length and
adiposity (BMI, subscapular skinfold, triceps skinfold
and subscapular:triceps ratio) from birth to 48 months.
We also examined BMI change in early childhood
(calculated as the difference between BMI Z-score at
48 months and birth), where BMI Z-score at birth and
48 months were calculated using WHO child growth
charts. Child anthropometric measures (except BMI
change) were log-transformed to improve normality and
reduce the impact of outliers. Each offspring anthropo-
metric measure at each assessment time point was
analysed separately. This was done by linear regression
of (log-transformed) anthropometric measures at each
time point against the methylation at each CpG site, ad-
justed for child sex, GA, ethnicity, cellular proportions
and interactions between ethnicity and cellular propor-
tions. To account for multiple testing across the eight
CpGs and 45 child size/adiposity measures, a CpG
would be associated with offspring size/adiposity if the
genomic control-adjusted P < 0.05/(8 × 45) = 1 × 10–4.
The genomic inflation factor was computed for each

offspring anthropometry measure across all 174,211 CpGs,
and genomic control was applied if the inflation factor for
the anthropometry outcome was above 1. This simple Bon-
ferroni correction for multiple testing across different
size/adiposity measures was likely to be extremely
conservative as the 45 size/adiposity measures were
strongly associated with each other. For concision, the
result sections describe only the conclusive findings,
while the rest are reported in Additional file 1: Supple-
mentary File F.

Multiple testing corrections
We used different multiple testing methods (FDR vs. Bon-
ferroni) at different analysis steps in the sections above. The
reason for the use of different methods was due to the
vastly different number of tests to be adjusted for multiple
testing in each analysis step. To adjust for multiple testing
across 174,211 CpGs in birth weight and neonatal DNA
methylome, we used FDR. For the environmental influ-
ences on top CpGs and for the top CpGs and offspring
size/adiposity in early childhood sections, FDR could not be
used for multiple testing adjustments because of the
relatively small number of tests (88 and 360, respectively)
and dependency between the tests [48, 49]. Instead, we
used Bonferroni threshold in order to maintain a family-
wise Type 1 error rate of 0.05 at each analysis step.

Accessing DNA methylation data
The infant methylation data analyzed in the current
study is available as Additional files 2 and 3.

Results
Birth weight is associated with 11 prenatal environments
This analysis used 987 of 1177 singleton deliveries in the
GUSTO cohort study. The subject selection criterion in-
cluded live singleton term births with Apgar score ≥ 9,
and availability of anthropometric measures, covariates/
confounder information, as well as genotyping and
methylation data for all subjects (Additional file 1:
Supplementary Figures A1–A3). Summary statistics of
these 987 mother-offspring participants are provided in
Tables 1 and 2; 58%, 17% and 25% of the participants
were from Chinese, Indian and Malay ethnicity, respect-
ively; and 52% of the infants were male. The number of
children with age- and sex-specific BMI Z-score exceed-
ing 2 and 3 at each time point are reported in Additional
file 1: Supplementary Table A1. The number of mothers
who were underweight, normal weight, overweight and
obese before pregnancy is reported in Additional file 1:
Supplementary Table A2. Using non-Asian BMI cut-offs,
12%, 64%, 17% and 7% of the mothers were underweight,
normal weight, overweight and obese, respectively,
before pregnancy. When Asian-specific BMI cut-offs were
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used, more women were classified as being overweight
(22%) and obese (14%) before pregnancy.
We assessed 30 prenatal environment variables

for association with birth weight (Additional file 1:
Supplementary Table A3). Of the 30 prenatal environ-
ment variables analysed (Tables 1 and 2), infant birth
weight was associated with maternal ppBMI, maternal
GWG, maternal height, maternal glucose levels (fasting
and 2-h post-75 g-glucose challenge), maternal plasma
n-6 PUFA and MUFA levels at 26 weeks gestation,
maternal age, and maternal smoking before and dur-
ing pregnancy (Fig. 1; Additional file 1: Supplementary
Tables A3 and A4; P < 0.05). There was also a suggestive
association with parity (Fig. 1; Additional file 1: Supple-
mentary Tables A3 and A4; P = 0.059). Greater maternal
adiposity (ppBMI and GWG), height, glucose levels (fast-
ing and 2-h post-glucose), n-6 PUFA levels, age and parity
were associated with higher birth weight, while higher
MUFA levels and maternal smoking (before and during
pregnancy) were associated with lower birth weight. Birth
weight changed by 2.2–5.5% for every 2 SD change in ma-
ternal adiposity (ppBMI and GWG), height, glucose levels
(fasting and 2-h post-glucose) or FA levels (n-6 PUFA and
MUFA). The effect sizes for parity (non-first born vs. first
born), maternal age (≥35 years vs. < 35 years) and smoking
(yes vs. no) were similar and ranged from 1.4% to 6.5%
(Fig. 1c; Additional file 1: Supplementary Table A3). Seven
of 11 of these prenatal environment variables, including
maternal adiposity (ppBMI and GWG), glucose levels
(fasting and 2-h post-glucose), FA levels (n-6 PUFA
and MUFA), and smoking during pregnancy, also
showed association with child BMI at birth (P < 0.05;
Additional file 1: Supplementary Figure A6). Consistent
with earlier findings [50, 51], maternal ppBMI, GWG and
glucose levels were also significantly associated with both
child weight and BMI at 48 months of age (Additional file 1:
Supplementary Figures A5–A8). For subsequent analyses

Table 1 Offspring characteristics of the GUSTO cohort studied
in the analysis

Time point N (%) Mean (SD)

Ethnicity Chinese Delivery 570 (58%)

Malay 247 (25%)

Indian 170 (17%)

Child sex Male 517 (52%)

Female 470 (48%)

Gestational age (weeks) 987 39 (1)

Weight (g) Delivery 959 3130.5 (380.9)

3 months 904 6150.6 (778.7)

6 months 864 7717.1 (914.3)

9 months 829 8615.0 (1001.4)

12 months 846 9380.2 (1078.6)

15 months 851 10086.2 (1164)

18 months 804 10742.4 (1298.7)

24 months 818 11981.6 (1552.8)

36 months 824 14249.8 (2028.2)

48 months 718 16442.1 (2692.4)

Length/height (cm) Delivery 959 48.7 (1.8)

3 months 904 60.9 (2.4)

6 months 868 67.1 (2.7)

9 months 830 71.6 (2.8)

12 months 848 75.4 (3.1)

15 months 843 78.9 (3.2)

18 months 689 82.1 (3.3)

24 months 718 87.6 (3.6)

36 months 817 94.8 (3.8)

48 months 716 102.3 (4.2)

Body mass index (kg/m2) Delivery 959 13.2 (1.2)

3 months 904 16.5 (1.6)

6 months 864 17.1 (1.6)

9 months 829 16.8 (1.5)

12 months 845 16.5 (1.4)

15 months 843 16.2 (1.4)

18 months 687 15.9 (1.3)

24 months 718 15.5 (1.4)

36 months 817 15.8 (1.5)

48 months 716 15.6 (1.8)

Subscapular skinfold (mm) Delivery 959 5.0 (1.2)

18 months 671 6.4 (1.4)

24 months 757 6.4 (1.6)

36 months 792 6.6 (1.9)

48 months 674 6.8 (2.7)

Table 1 Offspring characteristics of the GUSTO cohort studied
in the analysis (Continued)

Triceps skinfold (mm) Delivery 960 5.5 (1.3)

18 months 709 8.6 (1.7)

24 months 733 8.8 (1.8)

36 months 786 9.3 (2.3)

48 months 684 9.8 (2.9)

Subscapular:Triceps Delivery 959 0.9 (0.2)

18 months 646 0.8 (0.1)

24 months 722 0.7 (0.1)

36 months 780 0.7 (0.1)

48 months 671 0.7 (0.1)
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Table 2 Maternal characteristics of the GUSTO cohort studied in the analysis

Time point N (%) Mean (SD)

Pre-pregnancy BMI (kg/m2) Self-reported at first clinic visit 906 22.7 (4.4)

Gestational weight gain (kg) 26–28 weeks gestation 902 8.7 (4.7)

Maternal height (m) 971 158.3 (5.6)

Fasting glucose (mmol/L) 920 4.3 (0.5)

2-h post-glucose (mmol/L) 920 6.5 (1.5)

n-6 PUFA (%) 863 34.2 (3.3)

n-3 PUFA (%) 863 6.4 (1.8)

MUFA (%) 863 13.6 (2.3)

SFA (%) 863 45.8 (3.3)

EPDS score 955 7.4 (4.4)

STAI state score 957 33.8 (10.0)

STAI trait score 957 35.7 (9.6)

Caloric intake 3-day food diary (kcal) 550 1871.2 (476.3)

Caloric intake 24-h recall (kcal) 960 1843.6 (550.6)

Parity >0 Delivery 536 (54%)

0 451 (46%)

Maternal age (years) ≥35 Self-reported at first clinic visit 251 (25%)

<35 736 (75%)

Smoking before pregnancy Yes Interviewer-administered questionnaire at 26–28 weeks gestation 121 (12%)

No 855 (88%)

Smoking during pregnancy Yes 24 (2%)

No 951 (98%)

Plasma vitamin D >50 nmol/L 26–28 weeks gestation 718 (87%)

≤50 nmol/L 108 (13%)

Plasma folate ≥6 ng/mL 774 (90%)

<6 ng/mL 90 (10%)

Plasma vitamin B12 ≥300 pg/mL 373 (43%)

<300 pg/mL 492 (57%)

Plasma vitamin B6 <20 nmol/L 137 (16%)

≥20 nmol/L 727 (84%)

Plasma iron ≥560 μg/L 403 (92%)

<560 μg/L 36 (8%)

Plasma zinc ≥700 μg/L 417 (95%)

<700 μg/L 22 (5%)

Plasma magnesium ≥18.25 mg/L 304 (69%)

<18.25 mg/L 135 (31%)

IVF birth Yes Self-reported at first clinic visit 69 (7%)

No 918 (93%)

Maternal education (years) ≥12 596 (61%)

<12 379 (39%)

Working during pregnancy Yes Interviewer-administered questionnaire at 26–28 weeks gestation 681 (70%)

No 297 (30%)
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on the associations of prenatal environment with neo-
nate DNA methylation, we restricted the analyses to the
11 birth weight associated prenatal environment variables
shown in Fig. 1. We note that these 11 prenatal environ-
ments are not distinct/independent of each other, for
example, a mother who smokes during pregnancy is
highly likely to have been smoking before pregnancy.

Birth weight and early childhood adiposity were
significantly associated with polygenic risk score derived
from adult population studies
To interrogate if the genetic variation at loci previously
associated with adult adiposity was associated with
newborn size/adiposity, PRS or cumulative genetic risk
profile was constructed using genetic variants previously
reported to be associated with adult BMI by the GIANT

consortium [40]. This PRS showed a significant association
with birth weight, supporting an overlap in the genetic
factors contributing to birth weight and adult adiposity
(Fig. 2; Additional file 1: Supplementary Figure B1 and
Supplementary Table B1). Birth weight increased by 1.6%
for every 2 SD increase in PRS (Fig. 2a; Additional file 1:
Supplementary Table B1). The association of PRS with
birth weight remained even after adjusting for the 11
prenatal environment variables (Additional file 1:
Supplementary Table A5 and Supplementary Figure
A9), and the association of the prenatal environment
variables with birth weight was not PRS dependent
(Additional file 1: Supplementary Table A6), indicating the
independent influences of genotype and prenatal environ-
ment on birth weight; 18% of the total variation in birth
weight was explained by infant sex, ethnicity and GA,

Table 2 Maternal characteristics of the GUSTO cohort studied in the analysis (Continued)

Alcohol use before pregnancy Yes 338 (35%)

No 636 (65%)

Alcohol use during pregnancy Yes 19 (2%)

No 938 (98%)

BMI body mass index, EPDS Edinburgh Postnatal Depression Scale, IVF in vitro fertilisation, MUFA monounsaturated fatty acids, PUFA polyunsaturated fatty acids,
SFA saturated fatty acids, STAI State–Trait Anxiety Inventory

a b

c d

Fig. 1 Prenatal environment influences on birth weight. a Scatterplots of birth weight (vertical axis) against significantly associated continuous
prenatal environment variables (horizontal axis). b Boxplots of birth weight (vertical axis) against significantly associated binary prenatal
environment variables (horizontal axis). c Univariate association between birth weight and each significantly associated prenatal environment
variable, adjusted for infant sex, ethnicity and gestational age. Point estimates (height of bars) and 95% confidence intervals (top and bottom
whiskers), show percentage change in birth weight for two standard deviations increase in continuous prenatal environment variable, or for
comparing the two categories of binary prenatal environment variables. d Multivariate association between birth weight and significantly
associated prenatal environment variables, adjusted for infant sex, ethnicity, gestational age and for each other. Point estimates (height of bars)
and 95% confidence intervals (top and bottom whiskers), show percentage change in birth weight, for two standard deviations increase in a
continuous prenatal environment variable, or for comparing the two categories of binary prenatal environment variables
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while an additional 14% was explained by 11 prenatal
environment variables and PRS together. An association
between PRS and child BMI at birth was also observed
(Fig. 2b) and PRS was longitudinally associated with
weight and BMI in early childhood (Additional file 1:
Supplementary Figure B1 and Supplementary Table B1).
This longitudinal association of PRS with weight and BMI
from 3 to 48 months of age remained after adjustment for
birth weight or BMI (Additional file 1: Supplementary
Figure B2).

Birth weight was significantly associated with methylation
at eight CpGs within seven gene loci
DNA from umbilical cord tissue of the 987 neonates
was interrogated on Infinium HumanMethylation450
BeadChip arrays. A total of 174,211 CpGs were iden-
tified to vary in methylation by more than 10% across
the subjects. These CpGs were more likely to be lo-
cated in open seas and intronic/intergenic regions
(Additional file 1: Supplementary Figure C1). An EWAS
on birth weight was performed using these variably meth-
ylated CpGs, and adjusted for child sex, GA, ethnicity,
cellular proportions and interactions between ethnicity
and cellular proportions. Methylation levels at eight CpGs
were identified to be significantly associated with birth
weight at a FDR of 0.05 (Table 3; Additional file 1:

Supplementary Figures C2 and C3). Among them, six
CpGs were located within the protein coding genes:
(1) 5’-UTR of Ankyrin-3 (ANK3; P = 4.6 × 10–8); (2) 3’-
UTR of Cyclin-Dependent Kinase Inhibitor 2B (CDKN2B;
P = 4.9 × 10–8); (3) intron of Immunoglobulin Superfamily,
DCC Subclass, Member 4 (IGDCC4; P = 1.6 × 10–7);
(4) intron of Prolyl 4-hydroxylase, Alpha Polypeptide
III (P4HA3; P = 4.0 × 10–7); (5) intron of Calcium
Channel, Voltage-Dependent, T Type, Alpha 1G Subunit
(CACNA1G; P = 1.2 × 10–6); and (6) intron of Zinc Finger
Protein 423 (ZNF423; P = 1.9 × 10–6), while the remaining
two CpGs mapped to the non-coding gene MIRLET7BHG
(P = 9.9 × 10–7 and P = 2.2 × 10–6).
Variability in methylation at these seven gene loci

(eight CpGs) was modest with an interquartile range
(IQR) of 4.6% to 9.6%. DNA methylation levels at five of
seven loci (five CpGs) were positively associated with
birth weight, while DNA methylation at the remaining
two loci (three CpGs) were negatively associated with
birth weight. The effect sizes were modest, with a
3.7–9.2% change in birth weight associated with a
10% increase in methylation (corresponding to ap-
proximately 0.4–2 IQR). Together, these eight CpGs
accounted for an additional 9.5% of the total variation
in birth weight, in addition to the 32% accounted by
infant sex, ethnicity, GA, 11 prenatal environments

a b

c d

Fig. 2 Genetic influences on birth weight: Associations of child weight (a and b) and body mass index (c and d) at different time points with
best-fit polygenic risk score (PRS). Best-fit PRS for Chinese, Malay and Indian ethnic groups used clumping P value thresholds pT = 0.5, 0.1 and
10–4, respectively. PRS was standardised to mean zero and unit variance within each ethnic group. Left panel (a and c) shows point estimates
(height of bars) and 95% confidence intervals (top and bottom whiskers), for percentage change in child outcome, for a 2 SD increase in PRS,
adjusted for child sex, gestational age and ethnicity. Analysis was done by linear regression of log-transformed child anthropometric outcome at
each time point against PRS, adjusted for child sex, gestational age and ethnicity. Right panel (b and d) shows scatterplot of standardised (mean
zero and unit variance) log-transformed child outcome (vertical axis) against PRS (horizontal axis)
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and PRS. Sensitivity analysis using a reference-free
method to adjust for cellular heterogeneity gave similar
results (Additional file 1: Supplementary Table C1). The
associations between birth weight and methylation at
these sites did not depend on ethnicity (Additional file 1:
Supplementary Table C2) or infant sex (Additional file 1:
Supplementary Table C3). For subsequent analyses, we
used all seven loci (eight CpGs) identified at FDR < 0.05.

Methylation levels at three of the seven birth weight-
linked loci were significantly associated with prenatal
environment
We interrogated the contribution of individual prenatal
environments on variability in the epigenome at these
seven loci (eight CpGs). Methylation levels at three of
seven loci (IGDCC4, MIRLET7BHG, CACNA1G) were
significantly associated with the prenatal environment
after adjusting for multiple testing (Fig. 3; Additional
file 1: Supplementary Table D1; P < 5 × 10–4). Methyla-
tion levels at cg25685359 (MIRLET7BHG) showed a
significant inverse association with maternal n-6 PUFA
levels (Fig. 3; P = 4.2 × 10–4), and a significant positive as-
sociation with maternal smoking before pregnancy (Fig. 3;
P = 2.3 × 10–4). Methylation levels at cg25487405, which
also mapped to MIRLET7BHG, showed modest associa-
tions (P < 0.05) with these two prenatal environment
variables, though the associations did not survive multiple
testing adjustments. The directionality of the associations
between methylation and prenatal environments is con-
sistent (Fig. 3) as cg25685359 (MIRLET7BHG) showed a
negative association with birth weight (Table 3), and birth
weight was positively associated with maternal n-6 PUFA
levels but negatively associated with maternal smoking
(Fig. 1).
Methylation at cg23671997 (IGDCC4) showed a sig-

nificant positive association with maternal fasting glu-
cose levels (Fig. 3; P = 2.7 × 10–4), and it also showed

positive association with maternal ppBMI (P = 8.1 × 10–4).
Likewise, methylation at cg22383874 (CACNA1G) was
significantly and positively associated with maternal fast-
ing glucose levels (Fig. 3; P = 1.7 × 10–4), and was also
positively associated with maternal ppBMI (P = 2.9 × 10–2)
and maternal 2-h post-glucose levels (P = 4.2 × 10–3).
The directionality of associations between cg23671997
(IGDCC4) and cg22383874 (CACNA1G) and the pre-
natal environments is consistent (Fig. 3), as methyla-
tion levels at both CpGs were positively associated
with birth weight (Table 3), and birth weight was posi-
tively associated (Fig. 1) with maternal adiposity-
related influences (ppBMI, fasting and 2-h post-glucose
levels at mid-pregnancy). After adjustment for mater-
nal ppBMI, the associations of cg23671997 (IGDCC4)
and cg22383874 (CACNA1G) with maternal fasting
maternal glucose levels were similar but slightly re-
duced (P = 2.7 × 10–4 vs. P = 2.3 × 10–3 for cg23671997;
P = 1.7 × 10–4 vs. P = 4.0 × 10–4 for cg22383874; Fig. 3a vs.
Additional file 1: Supplementary Figure D1).

Methylation levels at three of the seven birth weight
linked loci were significantly associated with SNPs
To investigate the influence of genetic polymorphisms
on methylation at the seven birth weight associated loci
(eight CpGs), we regressed each CpG against all cis-
SNPs (SNPs on the same chromosome as the CpG).
Three loci were significantly associated with cis-SNPs
after adjusting for multiple testing (Additional file 1:
Supplementary Table E1). These three loci included
P4HA3, ZNF423 and MIRLET7BHG (only one of the two
MIRLET7BHG CpGs was significantly associated with
SNPs). The CpG-SNP distances ranged from 12 to 168 kb
(Additional file 1: Supplementary Table E1). For these
three CpG-SNP pairs, the association of methylation with
birth weight (effect sizes and P values) was similar with
and without adjustment for genotype at the SNP, and the

Table 3 Methylome-CpGs associated with birth weight at a false discovery rate of 0.05

CpG CHR POS IQR Est 95% CI P Gene Annotation

cg00510507 10 61900413 8.4 4.9 (3.5 to 6.2) 4.6 × 10–8 ANK3 5’ UTR

cg08390209 9 22005563 6.6 7.1 (5.1 to 9.0) 4.9 × 10–8 CDKN2B 3’ UTR

cg23671997 15 65677753 4.6 9.2 (6.5 to 12) 1.6 × 10–7 IGDCC4 Intron

cg14300531 11 73969506 9.6 –3.9 (–5.0 to –2.8) 4.0 × 10–7 P4HA3 Intron

cg25685359 22 46473721 8.8 –3.7 (–4.8 to –2.6) 9.9 × 10–7 MIRLET7BHG Non-coding

cg22383874 17 48670670 4.8 7.6 (5.2 to 10) 1.2 × 10–6 CACNA1G Intron

cg02729344 16 49888237 6.6 6.8 (4.7 to 9.0) 1.9 × 10–6 ZNF423 Intron

cg25487405 22 46473039 5.5 –5.6 (–7.2 to –3.9) 2.2 × 10–6 MIRLET7BHG Non-coding

Eight CpGs were significantly associated with birth weight at a false discovery rate (FDR) of 0.05. The eight CpGs mapped to seven loci (two CpGs mapped to
MIRLET7BHG). Regression coefficients (Est), 95% confidence intervals (CI) and P values are reported as percentage change in birth weight for 10% increase in
percent methylation. Interquartile range (IQR), chromosome (CHR) and position (POS) of CpG are also shown. Analysis was done by linear regression of log-
transformed birth weight against methylation at each CpG site, adjusted for child sex, gestational age, ethnicity, cellular proportions and interactions between
ethnicity and cellular proportions
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genotype at the SNP was not associated with birth weight
(Additional file 1: Supplementary Table E2). Finally, we
also investigated if the PRS was associated with methyla-
tion levels at these eight CpGs, and also if the PRS
moderates the associations between methylation and birth
weight/environment, but no significant associations were
observed (Additional file 1: Supplementary Tables E3–E5).

Methylation levels at six of the seven birth weight linked
loci predicted offspring size/adiposity at 48 months
Methylation levels at all seven loci (eight CpGs) showed
association with child weight in at least one time point
in early childhood (3–48 months), even though these
associations did not survive multiple testing adjustments
(Fig. 4a; P < 0.05). The effect sizes (associations between
methylation and child weight) were either (1) strongest at
birth and decreased from 3 to 48 months, or (2) strong at
birth, decreased initially, and then increased from 18 to
48 months, or (3) strongest at birth, but remained the same

(approximately) from 3 to 48 months (Fig. 4a). Methylation
levels at six of seven loci (six CpGs) were also significantly
associated (P < 1 × 10–4) with BMI at birth (the remaining
two CpGs showed suggestive associations; P < 0.005); the
change in effect sizes of BMI with child age showed a
similar pattern as that of child weight (Fig. 4b). At age
48 months, methylation levels at six of seven loci (six
CpGs) and two of seven loci (two CpGs) showed moderate
associations with child weight and BMI, respectively (P <
0.05). The associations between neonate methylation and
child size/adiposity in early childhood (3–48 months) were
not independent of birth weight (data not shown). Methyla-
tion levels at cg25685359 (MIRLET7BHG) showed a
suggestive association with BMI change in early child-
hood (Additional file 1: Supplementary Table F1), where
BMI change was calculated as the difference between
age- and sex-specific Z-score at 48 months and birth;
this association did not survive adjustment for birth
weight either (P > 0.05).

a b

Fig. 3 Influence of prenatal environment on methylome at birth. a Associations of DNA methylation at birth with prenatal environment. Colour
in heatmap represents regression coefficients for associations between methylation and each prenatal environment variable. Each row represents
a CpG and each column represents a prenatal environment variable. With increasing magnitudes, colour changes from white to red (for negative
coefficients) or from white to blue (for positive coefficients). Asterisks within each square represent P values for associations between methylation
and each prenatal environment variable (P < 5 × 10–8 is represented with eight asterisks, 5 × 10–8 ≤ P < 5 × 10–7 is represented with seven asterisks,
5 × 10–3 ≤ P < 5 × 10–2 is represented with two asterisks, P ≥ 5 × 10–2 is represented with a blank square). Analysis was done by linear regression of
methylation at each CpG site against each prenatal environment variable, adjusted for child sex, gestational age, ethnicity, cellular proportions
and interactions between ethnicity and cellular proportions. Regression coefficients and P values are reported as an increase in percent methylation
for a 2 SD increase in continuous prenatal environment variable, or for comparing the two categories of binary prenatal environment variables.
b Flow chart summarises associations between birth weight, methylation and prenatal environment for three CpGs (three loci) influenced by the
prenatal environment. A CpG was defined to be influenced by the prenatal environment if the most significant association between the CpG and
prenatal environment attained a P value of < 5 × 10–4 the Bonferroni threshold to maintain a family-wise Type 1 error rate of 0.05 across approxi-
mately 100 tests (8 CpGs x 11 prenatal environment variables). Directions in arrows indicate temporal sequence, measurements obtained at the
same time are indicated with two-headed arrows
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Discussion
We have demonstrated that genetic, epigenetic and
prenatal environmental factors are linked to offspring
size and adiposity at birth and in early childhood. Firstly,
we identified individual prenatal environmental influ-
ences on birth weight; we have previously reported that
some of these prenatal environment variables (maternal
ppBMI, GWG and glucose levels) continued to associate
with offspring size and adiposity in early childhood
[50, 51]. Secondly, genetic variation, as captured by
PRS, not only influenced birth weight, but also child
size and adiposity up to 48 months of age, independ-
ent of birth weight. The PRS was constructed using
adiposity-linked genetic risk variants previously re-
ported in an adult population. The association of
adult adiposity risk score with size and adiposity in
our paediatric population indicates that the effects of
genetic risk variants can be detected as early as birth.
This finding is also in confirmation with the earlier
study that reported an association between newborn
weight and adiposity with adult adiposity-derived PRS
[52]. Thirdly, neonatal methylation levels at seven loci
were associated with birth weight. At six of the seven

loci, there was suggestive evidence that the associa-
tions continued to persist up to 48 months of age.
Among them, two of the loci (CDKN2B/P4HA3) also
showed suggestive association with child BMI at 48
months. Even though the associations in early child-
hood did not survive multiple testing corrections,
these CpGs still hold potential as biomarkers of ad-
verse metabolic trajectory as the prevalence of obesity
increases with age and might become more apparent
later in the life-course. Lastly, methylation levels at three
of seven loci associated with birth weight (IGDCC4,
MIRLET7BHG, CACNA1G) also showed significant asso-
ciations with the prenatal environment; however, similar
analyses with childhood weight and adiposity measures
showed suggestive associations. Together, these findings
provide evidence that birth weight is influenced by both
genetic and prenatal environment factors, possibly acting
through different mechanisms, either by altering the epi-
genome (evidenced by CpGs that were associated with
prenatal environment and/or SNPs) or independently of
the epigenome (e.g. the PRS).
Notably, four of seven methylation loci were located in

coding genes (ANK3, CDKN2B, CACNA1G) and the

a b

Fig. 4 Influence of methylome at birth on adiposity outcomes in early childhood: Associations of child weight (a) and body mass index (b) at
different time points with DNA methylation at birth. Colour in heatmap represents regression coefficients for associations between child
anthropometric outcome and methylation. Each row represents a CpG and each column represents a time point. With increasing magnitudes,
colour changes from white to red (for negative coefficients) or from white to grey (for positive coefficients). Asterisks within each square
represent P values for associations between child anthropometric outcome and methylation (P < 5 × 10–8 is represented with eight asterisks,
5 × 10–8 ≤ P < 5 × 10–7 is represented with seven asterisks, 5 × 10–3≤ P < 5 × 10–2 is represented with two asterisks, P ≥ 5 × 10–2 is represented with
a blank square). Analysis was done by linear regression of log-transformed child anthropometric outcome at each time point against methylation
at each CpG site, adjusted for child sex, gestational age, ethnicity, cellular proportions and interactions between ethnicity and cellular proportions.
Regression coefficients and P values are reported as percentage change in child anthropometric outcome for 10% increase in percent methylation
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miRNA let-7b host gene (MIRLET7BHG) that have been
previously implicated in metabolic disorders in human
adults and animal model systems. ANK3 encodes a pro-
tein from ankyrin family, and ankyrins have been associ-
ated with age dependent adiposity and insulin resistance
in a rat model system [53]. CDKN2B is known to be
involved in metabolic processes since it is highly
expressed in subcutaneous adipose tissue, and its expres-
sion alters with energy balance (higher expression in
obese subjects and down-regulated expression during
calorie restriction-induced weight-loss) [54]. Further-
more, genetic variants near the CDKN2A/B 9p21.3 locus
were previously found to be associated with risk for
CVD and T2DM in adults [55]. T-type calcium channels
are implicated in maintaining body weight in a rat
model, where the administration of CACNA1G antago-
nists to obese rodents results in reduced body weight
and fat mass, and increased lean muscle mass [56].
MicroRNA let-7B, transcribed from the MIRLET7BHG
host gene, belongs to the let-7 family of miRNA that is
known to play an important role in adipocyte differenti-
ation (3T3-L1 mouse cells) by targeting HMGA2, a tran-
scription factor that regulates growth and proliferation
[57, 58]. Furthermore, transgenic mouse experiments
have shown that let-7 is a potent regulator of glucose
metabolism and peripheral insulin receptors, by target-
ing insulin-like growth factor 1 (Igf1r), insulin receptor
(Insr) and insulin receptor substrate-2 (Irs-2) in skeletal
muscle and liver tissues [59]. Let-7 is also a potential
biomarker for metabolic disease. In a human interven-
tional study reducing the glycemic load in the diet of
healthy premenstrual women, let-7b was the most
dramatically altered miRNA, with nearly an eightfold
increase of plasma let-7b after 12 months [60].
As mentioned earlier, some of these loci also showed

association with either the prenatal environment
(MIRLET7BHG, IGDCC4, CACNA1G) or suggestive
association with child BMI at age 48 months (CDKN2B,
P4HA3). Collectively, our findings fit within the para-
digm of epigenetic mediation in the DOHaD hypothesis.
According to the DOHaD hypothesis, the predisposition
to adulthood diseases is primed in utero by specific ante-
natal environments [6], and the mechanistic underpin-
nings of this phenomenon includes alterations in the
epigenome [6]. Here, our discovery of an altered neo-
natal epigenetic profile at metabolism-linked gene loci
and its associations with prenatal environment and the
onset of adiposity in utero fit with this paradigm.
However, we note that the longitudinal contributions of
prenatal environment and the associated changes in the
methylome were observed to be moderate for childhood
adiposity. Obesity is a complex multifactorial disease
that is responsive to environmental changes. Likewise,
the epigenome is a modifiable factor and sensitive to

developmental and environment cues. In the future, it
would be critical to test how these prenatal environment
induced changes in the child’s methylome interact or
alter with the postnatal environment and developmental
changes. It is evident that the associations of methyla-
tion (at birth weight-linked loci) with child weight and
adiposity either (1) stayed strongest at birth and declined
by 48 months, or (2) stayed strong at birth, decreased
initially, and then increased from 18 to 48 months, or
(3) were strong at birth, but remained the same
(approximately) from 3 to 48 months (Fig. 4a and b).
These observations very well indicate that epigenetic
programing of obesity in early life is dynamic, and can
either weaken, strengthen, or stay unchanged with time.
Hence, it is possible that some of these epigenetic varia-
tions acquired at birth will either become benign, or stay
active and become more detrimental later in the life-
course. This is further supported by published literature
which shows that childhood obesity increases with age;
the prevalence of childhood obesity among children aged
7–11 years is almost double than that of children aged
2–6 years [61]. Evaluation of these candidate loci for
subject risk stratification or obesity prevention requires
further work to examine how DNA methylation levels at
these loci changes with age and environmental expo-
sures during childhood.
This study has several strengths, including its pro-

spective and longitudinal study design with a relatively
large sample size. The previous three birth weight
EWAS [19–21] that had comparable sample sizes did
not incorporate genetic or extensive prenatal environ-
ment information. Also, the longitudinal offspring
anthropometric measures allowed us to study the
association of perinatal methylation with both birth and
postnatal outcomes for up to 48 months of age. Simpkin
et al. [20] and Sharp et al. [21] also examined adiposity
measures (and methylation measures) in childhood and
adolescence, but did not provide detailed information in
early childhood. Additionally, our study population is
comprised of three major Asian ethnic groups that make
up more than 40% of the world’s population, while previ-
ous investigations were conducted primarily among
Caucasian participants. On examination of the CpGs
previously reported to be associated with birth weight
[19–22], cg04521626, which mapped to the phospholip-
ase D2 (PLD2) gene, was statistically significant after
adjustment for multiple testing in our cohort (Additional
file 1: Supplementary Table C4). For other CpGs that we
could not replicate in our study, deviations from previ-
ous findings could be due to the underlying differences
in the populations examined (different genetic and/or
prenatal environment influences in different ethnic
groups). Deviations could also be due to differences in
tissues assayed (cord tissue vs. cord blood) as DNA
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methylation is cell type-specific, and cord tissue and
cord blood have different cellular composition and cell
lineages. For example, cord tissue contains stromal cells
from mesenchymal stem cell lineage [62, 63], while cord
blood contains mostly cell types from hematopoietic
stem cell lineage. This further suggests that neonate
EWAS findings may be ethnicity and/or tissue-specific.
Cross-tissue/cross-population studies are needed to gen-
eralise the findings to other tissues/populations. Add-
itionally, cross-tissue comparisons will enable us to
distinguish between common and tissue-specific signals.
There are limitations of this study. First, residual con-

founding is a concern in any epidemiological investiga-
tion. In the context of EWAS, one of the major sources
stems from cellular heterogeneity of the tissue being sur-
veyed, as different cell types can have distinct methyla-
tion profiles. Cord tissue, like other infant tissues
examined in a neonate EWAS, is heterogeneous in its
cellular content and consists of stromal, epithelial and
endothelial cells (and possibly cord blood contamin-
ation) [62, 63]. To combat the issue of cellular hetero-
geneity, we employed two independent methods of
analyses; however, this does not completely rule out the
confounding effects of cellular heterogeneity. Availability
of better cell type reference sets developed by fraction-
ation of cell types in infant cord tissue, in a population-
specific manner, will alleviate this limitation in future. In
spite of the lack of comprehensive reference sets, an im-
portant observation is that we did not find association
between the estimated cellular proportions and birth
weight for the majority of the study individuals investi-
gated (Chinese and Indian, 75% of sample size), thus re-
ducing the possible impact of residual confounding due
to cellular heterogeneity. Second, we acknowledge that
in investigating genetic influences on birth weight, our
study was not designed to have sufficient power for a
genome-wide association study. Indeed, such a study
performed on child anthropometric outcomes from birth
to 48 months of age (data not shown) revealed no single
locus significant at the commonly used genome-wide
significance threshold (P = 5 × 10–8). However, the ab-
sence of any single loci achieving the conventional
genome-wide significance at 5 × 10–8 was more likely to
be due to a lack of statistical power than caused by a
lack of genetic influences on birth weight. Therefore, we
used a genetic risk profiling approach and genetic vari-
ants reported by the GIANT consortium to form a single
composite measure/score of genetic risk, and used this
risk score to investigate genetic influences on birth
weight. Third, the GUSTO cohort study was primarily
designed to obtain extensive prenatal environment mea-
sures at mid-pregnancy. Consequently, we were unable
to examine trimester-specific effects on the growing
fetus. Since late pregnancy weight gain has been linked

to suboptimal metabolic outcomes in offspring, we ana-
lysed maternal weight measures in late pregnancy de-
rived from medical records (36–41 weeks, N = 803 of
987 subjects). As gestational weight gain from pre-
pregnancy to mid-pregnancy already showed a signifi-
cant association with birth weight, we restricted the late
pregnancy analysis to the weight gain between mid-
pregnancy and 36–41 weeks. Unlike the gestational
weight gain up to mid-pregnancy, the additional weight
gain during late pregnancy did not associate with infant
birth weight (P = 0.12). It is unclear whether the absence
of significance is an indication of trimester-specific ef-
fects or a result of low statistical power due to the
reduced sample size. Future studies require detailed pre-
pregnancy and trimester-specific information to reflect
better on the temporal influences of prenatal environ-
ment on the growing fetus. Lastly, while we have longi-
tudinal measures of anthropometry, we do not have
longitudinal measures of methylation in early childhood
and during fetal development, which would be import-
ant for determining causality and directionality of the ef-
fects. For example, to investigate if DNA methylation
mediates effects of the prenatal environment on off-
spring adiposity one would need to first establish the
temporality/directionality of the effects, i.e. whether (1)
increased child adiposity leads to the alterations in DNA
methylation, or (2) DNA methylation changes lead to in-
creased child adiposity. DNA methylation is a possible
mediator in the latter scenario but not the former.
Moreover, examining further how DNA methylation
levels at these loci change with age, body size, adiposity
during childhood and environmental exposures during
childhood will allow for better evaluation of these candi-
date loci for stratification and obesity prevention strat-
egies. A comparison of methylation measurements
collected in utero, at birth and in early childhood, across
different tissue types, is an important area of investiga-
tion for future studies.
Childhood obesity has both immediate and long-term

effects on the health and well-being of an individual.
Children who are obese are more likely to become obese
adults [64–66]. In the Bogalusa Heart study [65], child-
hood levels of both BMI and triceps skinfolds were
associated with adult BMI and adiposity. The magni-
tudes of these associations increased with childhood age,
but were evident from as early as 2 years of age. Over-
weight children (age 2– 5 years) with BMI ≥ 95th per-
centile had more than four times the risk of becoming
overweight adults compared with children < 50th per-
centile. Childhood obesity is also linked with several ad-
versities and co-morbidities in the life-course [67]. It can
lead to type 2 diabetes, cardiovascular risk and increased
incidence of metabolic syndrome in youth and adults. It
is also associated with earlier pubertal maturation in
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girls, and early maturing girls tend to have higher BMIs
and body fat at the time of menarche [68, 69]. Co-
morbidities developed during the life-course in obese chil-
dren include bone and joint problems, as well as social and
psychological issues such as stigmatisation and poor self-
esteem [70, 71]. A deeper understanding on how different
factors contribute to adiposity, especially early in life, could
be useful in troubleshooting the obesity epidemic.

Conclusions
Developmental pathways to adiposity begin before birth
and are influenced by genetic, epigenetic and prenatal
environment factors. These pathways may have lasting
effects on offspring size, adiposity and metabolic trajec-
tory, and have utility in identifying individuals who are
susceptible to obesity and metabolic disease later in life.
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