Chang et al. BMC Medicine (2018) 16:52

https://doi.org/10.1186/512916-018-1037-3 B M C M ed |C| ne

Small contribution of gold mines to the ® e
ongoing tuberculosis epidemic in South
Africa: a modeling-based study

Stewart T. Chang'"®, Violet N. Chihota®**, Katherine L. Fielding®?, Alison D. Grant*®”, Rein M. Houben®,
Richard G. White®, Gavin J. Churchyard®*®, Philip A. Eckhoff' and Bradley G. Wagner'

Abstract

Background: Gold mines represent a potential hotspot for Mycobacterium tuberculosis (Mtb) transmission and may
be exacerbating the tuberculosis (TB) epidemic in South Africa. However, the presence of multiple factors
complicates estimation of the mining contribution to the TB burden in South Africa.

Methods: We developed two models of TB in South Africa, a static risk model and an individual-based model that
accounts for longer-term trends. Both models account for four populations — mine workers, peri-mining residents,
labor-sending residents, and other residents of South Africa — including the size and prevalence of latent TB
infection, active TB, and HIV of each population and mixing between populations. We calibrated to mine- and
country-level data and used the static model to estimate force of infection (FOI) and new infections attributable to
local residents in each community compared to other residents. Using the individual-based model, we simulated a
counterfactual scenario to estimate the fraction of overall TB incidence in South Africa attributable to recent
transmission in mines.

Results: We estimated that the majority of FOI in each community is attributable to local residents: 93.9%

(95% confidence interval 92.4-95.1%), 91.5% (91.4-91.5%), and 94.7% (94.7-94.7%) in gold mining, peri-mining,

and labor-sending communities, respectively. Assuming a higher rate of Mtb transmission in mines, 4.1% (2.6-5.8%),
5.0% (4.5-5.5%), and 9.0% (8.8-9.1%) of new infections in South Africa are attributable to gold mine workers,
peri-mining residents, and labor-sending residents, respectively. Therefore, mine workers with TB disease, who
constitute ~ 2.5% of the prevalent TB cases in South Africa, contribute 1.62 (1.04-2.30) times as many new infections
as TB cases in South Africa on average. By modeling TB on a longer time scale, we estimate 63.0% (58.5-67.7%) of
incident TB disease in gold mining communities to be attributable to recent transmission, of which 92.5% (92.1-92.9%)
is attributable to local transmission.

Conclusions: Gold mine workers are estimated to contribute a disproportionately large number of Mtb infections in
South Africa on a per-capita basis. However, mine workers contribute only a small fraction of overall Mtb infections in
South Africa. Our results suggest that curtailing transmission in mines may have limited impact at the country level,
despite potentially significant impact at the mining level.
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Background

Gold mines in South Africa have historically been impli-
cated in initiating the tuberculosis (TB) epidemic in
South Africa. As Packard notes, “The immense size of
the mine labor force, over 200,000 on the Rand alone by
1910, together with the appalling health conditions that
existed on the mines, ensured that they would play a
central role in the early development of TB in southern
Africa” [1].

To what extent gold mines continue to contribute to
TB in South Africa, however, is subject to debate.
Several factors complicate this question. Within the
mines, crowding, insufficient ventilation, and warm,
humid air may increase the rate of AMycobacterium
tuberculosis (Mtb) transmission. Biological and social
factors may then affect the extent to which Mtb spreads
among mine workers and from mine workers to other
groups. For example, mine workers and residents of
other areas with whom they interact may already have
latent tuberculosis infection (LTBI), which confers par-
tial immunity to reinfection despite posing a longer-
term risk for reactivation in the future [2]. Both mine
workers and residents of other communities may also
carry high burdens of HIV infection, increasing their
rate of reactivation [3-5]. Finally, mixing patterns be-
tween mine workers and other residents may determine
to what extent mine workers contribute to the larger
epidemic [2, 6]. For example, estimating the risk of TB
infection in peri-mining residents due to mine workers
requires one to account for the probability that suscep-
tible peri-mining residents come into contact with infec-
tious mine workers, which depends on the size of each
group, the prevalence of LTBI and active TB in each
group, and the amount of time the groups spend to-
gether. On a longer time scale, labor-related migration
and repatriation of mine workers are also likely to affect
how widely mine workers may spread infections [2, 6].

Mathematical models have served as useful tools for
understanding the TB epidemic in South Africa. For ex-
ample, at the country level, models have been used to
predict the impact of implementing different interven-
tions [7-10]. Models have also proved useful for under-
standing more local disease dynamics, e.g., at the level of
a city [11] or in specific environments such as a prison
[12] or a household [13]. More recently, models have
also been applied to the gold mines in South Africa to
understand the results of the Thibela TB study, which
tested a sustained campaign of preventive therapy
among mine workers [14, 15]. However, models have
not yet addressed how mine workers mix with other
groups and whether these interactions contribute to
overall TB burden.

To estimate the contribution of gold mines to the on-
going TB epidemic in South Africa, we developed two
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computational models and applied them to gold mine
workers and mining-related groups in South Africa.
First, we developed a simplified static risk model that ac-
counts for data on gold mine workers and peri-mining,
labor-sending, and other residents of South Africa and
estimates the force of infection (FOI) and fraction of
transmission events (new infections) in each community
that are attributable to local residents compared to resi-
dents from other areas. Secondly, we developed a dy-
namic, individual-based model of TB that accounts for
longer-term trends in demographics and risk factors and
also features a more detailed disease natural history to
estimate the fraction of incidence attributable to trans-
mission from gold mine workers. Together, these tools
provide quantitative estimates that address to what ex-
tent gold mines are continuing to contribute to the TB
epidemic in South Africa.

Methods

Epidemiological data sources

We consider four residency groups in South Africa: gold
mine workers, peri-mining residents, labor-sending resi-
dents, and other residents of South Africa. Our primary
data source for mine workers was data collected during
the Thibela TB study [16]. Peri-mining communities
were identified based on proximity to Thibela TB study
sites, comprising the Lejweleputswa (Free State prov-
ince), West Rand (Gauteng province), and Dr Kenneth
Kaunda (North West province) districts. Labor-sending
communities were identified as the OR Tambo and Al-
fred Nzo (Eastern Cape province) and Ugu and Sisonke
(KwaZulu-Natal province) districts. Other residents of
South Africa were assumed to comprise all remaining
districts. Residents of areas outside of South Africa were
not considered.

Input parameters

In the models we accounted for three general cat-
egories of parameters: population size, disease natural
history, and population mixing. Population sizes were
taken from the South Africa Census 2011 [17]. For
the mine worker population, we considered both gold
mine workers and mine workers of other commod-
ities, representing an upper limit on the at-risk popu-
lation [18, 19]. The epidemiological characteristics of
each population were derived from the literature.
Measurements of TB incidence and prevalence at the
country level were taken from World Health
Organization estimates [20] and at the mine level
from the Thibela TB study [21], while HIV preva-
lence and antiretroviral therapy (ART) coverage were
taken from Joint United Nations Programme on
HIV/AIDS (UNAIDS)-based measurements [22]. Dis-
ease natural history parameters were similar to those
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found in other TB models and included the rate at
which infected individuals progress to active disease
as a result of primary disease or reactivation, the
effect of HIV on reactivation, and the frequency of
different forms of active disease (smear-positive,
smear-negative, and extra-pulmonary) and relative
infectiousness of each form (Additional file 1: Table
S1). Parameters specific to mining included a multi-
plier for increased Mtb transmission in the mines,
the prevalence of silicosis among mine workers, and
the effect of silicosis on reactivation (Additional file 1:
Table S2). South Africa-specific estimates of health-
care access and treatment effectiveness via directly
observed therapy short-course (DOTS) were also in-
cluded (Additional file 1: Table S3). Population mix-
ing parameters were taken from national tourism
surveys [23] as well as data collected during the Thi-
bela TB study (Additional file 1: Table S4).

Description of static risk model (spreadsheet model)

To account for the current state of the TB epidemic
in mining and mining-related communities in South
Africa and short-term, sub-annum processes that re-
late to TB transmission between these communities,
we developed a static risk model. The model repre-
sents a Taylor series-type approximation of dynamic
processes such as the generation of new infections
given the number of susceptibles and prevalent cases
in each population and the effect of risk factors such
as increased Mtb transmission in the mines and HIV
in the overall population. These quantities are not up-
dated iteratively in the model; therefore, the model
represents a short-term, 1-year projection of these
quantities.

The static risk model (spreadsheet model) was
encoded in Excel and comprises formulas to calculate
the FOI (per-susceptible rate of infection) and num-
ber of infections occurring in each group (Fig. 1la). A
“who acquires infection from whom” (WAIFW)
matrix [24] was derived where each element f3; repre-
sents the rate of Mtb transmission from infectives in
group j to susceptibles in group i for every commu-
nity k where contact was assumed possible (spread-
sheet matrix 1). Each element of the WAIFW matrix
was based on a base rate of transmission S, which we
defined as the number of new infections generated by
each infective case per year averaged over smear-
positive, smear-negative, and extra-pulmonary forms
of disease. By was multiplied by a community-specific
transmission multiplier ¢, which accounts for mul-
tiple environmental factors and was calibrated in the
individual-based model, and the fractions of each year
pik and pj that individuals from groups i and j, re-
spectively, spend in community k (Fig. 1b). pic and pj
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Fig. 1 Disease state transitions and groups represented in the static risk
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longer-term processes such as new infections contributing to prevalence
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were converted to a frequency of contact between in-
dividuals from groups i and j in community & by div-
iding by the total number of individuals Nj present in
community k at any given time, i.e., assuming
frequency-dependent transmission [25]. B; was then
calculated by summing this product over the set A of
all communities k where groups i and j spend time.
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Additional quantities were derived using the WAIFW
matrix:

Az The FOI among susceptibles in group i attributable
to infectives from group j, calculated by multiplying S;
by the number of infectives in group j (spreadsheet
matrix 2). The sum over all j for a given i provides the
overall probability of infection per year for susceptibles
in group i.

Li;: The rate of infection in group i per-capita attribut-
able to group j, calculated by multiplying A; by the frac-
tion of group i who are susceptible where susceptible is
defined as uninfected or latently infected but suscep-
tible to reinfection (spreadsheet matrix 3).

PAF(A;): The population attributable fraction (PAF) of
FOI in group i attributable to group j, calculated by
dividing each by the sum of 1,; over all j for a given i
(spreadsheet matrix 4).

PAF(L;): The PAF of all new infections in South Africa
attributable to group j, calculated by dividing the
number of infections attributable to group j (i.e., the
sum of L; over all i for a given j) by the total number
of infections (i.e., the sum of L;; over all i and all /)
(spreadsheet matrix 5).

pcPAF(L): The PAF of all new infections in South
Africa attributable to group j relative to the size of j
(i.e., per-capita j) calculated by dividing PAF(L;) by the
fraction of the South African population that group j
represents (spreadsheet matrix 6). This represents the
contribution of a particular group relative to its popula-
tion size including both susceptible and infected
individuals.

In the static risk model we also calculated a near-
term estimate of TB incidence I; in each group i (Fig.
1la). In this case near-term refers to 1 year in the fu-
ture, as prevalence after the first year was not up-
dated to include new cases or losses due to treatment
or death. Near-term incidence accounted for TB cases
from primary disease resulting from new infections in
a given year and TB cases from reactivation of a
stable pool of latent infections. Specifically near-term
incidence was calculated as the sum of incidence from
five sources: (1) primary disease from new infections (kiL;),
(2) reactivation from non-silicotic, non-HIV-positive latent
infections (ky(1 — S;)(1 — H)P)), (3) reactivation from non-
silicotic, HIV-positive latent infections (kymig (1 — S)H.P),
(4) reactivation from silicotic, non-HIV-positive latent in-
fections (kymsoSi(1 — H;)P), and (5) reactivation from sili-
cotic, HIV-positive latent infections (kyms 1 SiH,P;). Here ky
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and k, represent base rates of primary disease in newly in-
fected and reactivation in latently infected individuals, re-
spectively, and L; was derived from L; above. S;, H;, and P
represent the stable prevalence of silicosis, HIV, and LTBI
in group i, and mygg, Mgy, and mgy represent multipliers
on k, for silicotic, HIV-positive, and simultaneously silicotic
and HIV-positive individuals, respectively. HIV-positive la-
tent infections were further subdivided into those receiving
or not receiving ART, each assigned a separate multiplier
on k,. Because the static risk model did not account for
longer-term migration, e.g., for mine workers repatriating
to labor-sending areas, the prevalence of silicotics in non-
mining areas was assumed to be zero. The resulting values
of I; were compared to published values for mine workers
from the Thibela TB study and for all South Africa from
WHO estimates (spreadsheet matrix 7).

Monte Carlo simulations were performed where the
mine-specific transmission rate and immunity from re-
infection were sampled from normal distributions, while
all other parameters were held at baseline values. For
the mine-specific transmission rate, 95% of the density
was assumed to lie within -20% and +20% of the base-
line value. This range was selected based on the
Gammaitoni-Nucci equation [26], which specifies that
the probability of an individual acquiring an infection in
a confined space increases exponentially as the inverse
of ventilation rate. Therefore, a —20% or +20% difference
in transmission rate could result from a +25% or —-17%
change in ventilation rate, respectively; these were simi-
lar to values from the individual-based model calibration
(cf. Additional file 1: Figure S2B, S2C). For immunity
from reinfection, 95% of the density was assumed to lie
within -40% and +40% of the baseline value. One thou-
sand randomly drawn pairs of values for these two pa-
rameters were used, and 95% confidence intervals (ClIs)
were taken from the 0.025 and 0.975 quantiles of the
resulting output values. Both the static risk model and
the individual-based model as well as input parameter
files are available on GitHub (https://github.com/SCTX/
mining_contribution).

Description of individual-based model

While the static risk model accounts for the current
state of the TB epidemic and processes occurring on a
sub-annum time scale, particularly population mixing, it
does not update the prevalence of different disease states
iteratively and does not represent longer-term changes
in demographics and risk factors such as HIV. To pro-
vide a longer-term representation of the TB epidemic,
we developed a dynamic, individual-based model; this
model was coded in C++ and based on the TB model
available in the EMOD software package [27]. We briefly
describe the model here; parameter values and
additional details are provided in Additional file 1:
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Tables S1-S4. Individuals were assigned one of the fol-
lowing disease states: susceptible, latently infected, active
pre-symptomatic, active symptomatic, and recovered.
Individuals transitioned between these states randomly
according to exponentially distributed delays. Birth
and non-disease death processes were represented
whereby individuals were added to and removed from
the simulation at rates consistent for South Africa. A
residency status in one of the four groups in the model
(mining, peri-mining, labor-sending, and other South
Africa) was assigned at birth. Residency status was
retained for the lifetime of the individual except for
individuals born with labor-sending group status who
transitioned to mining status during adulthood and
then back to labor-sending status upon retirement.
Short-term mixing between groups representing regu-
lar visits from mine workers to peri-mining or labor-
sending communities was specified by an interaction
matrix as in the static risk model. The numbers of
discrete agents in the model were scaled in the output
to reflect the sizes of the real populations: individuals
in mining, peri-mining, and labor-sending groups by
approximately 50:1 and in other South Africa by ap-
proximately 400:1. These scale factors corresponded
to 2011 population sizes of approximately 0.5 million
(M), 2.1 M, and 3.4 M in mining, peri-mining, and
labor-sending areas, respectively, and 47 M in the re-
mainder of South Africa [17].

Two risk factors were represented in the individual-
based model, HIV infection and silicosis. HIV infection
was distributed to individuals according to age-specific
rates of infection; these were generated from the EMOD
HIV model calibrated to South Africa [28] and assumed
to be the same across residency groups [29-31]. The
EMOD HIV model assigned a CD4 count to each indi-
vidual which declined linearly with time in the absence
of treatment [29-31]. ART was distributed to HIV-
positive individuals according to eligibility guidelines in
South Africa and matched population coverage estimates
[22]. ART had the effect of increasing CD4 levels in the
model [29-31]. Silicosis was acquired by mining group
individuals at a rate consistent with radiographic obser-
vations in mine workers, at approximately 1% per year
of employment [32-34] (Additional file 1: Table S2).

Susceptible individuals in the model were infected at a
rate that differed by residency group and depended on
the total infectiousness of other groups and the fre-
quency of group interactions. The infectiousness of each
group depended on the prevalence of different forms of
active TB, where pre-symptomatic, smear-negative, and
extra-pulmonary forms of disease were assumed to con-
tribute less infectiousness than smear-positive disease.
Data on the frequency of group interactions were speci-
fied by a WAIFW matrix as in the static risk model [35].
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Infected individuals transitioned to active disease with
one of two rates representing primary and reactivation
disease. Active disease in the model included a pre-
symptomatic period of set duration followed by symp-
tomatic disease of smear-positive, smear-negative, or
extra-pulmonary forms. Individuals persisted in symp-
tomatic disease until progressing to self-cure, treatment,
or death. HIV and silicosis had the effect of increasing
the rate of reactivation, represented as multipliers on the
base rate of reactivation [36]. For HIV-positive individ-
uals, the magnitude of the increase varied as the inverse
of CD4 level.

Individuals with active symptomatic disease were as-
sumed to seek care at high or low rates corresponding
to high- or low-quality access to care, respectively,
broadly representing different levels of care in South Af-
rica. Upon accessing care, symptomatic individuals were
assumed to receive a sputum smear or GeneXpert test,
depending on whether care was sought before or during
DOTS availability. The probability of a positive test re-
sult corresponded to observed test sensitivities. If a posi-
tive test result was obtained, an individual was assumed
to undergo treatment, with a rate of disease clearance
that depended on whether treatment was given before or
during DOTS availability. Following treatment, individ-
uals transitioned to a recovered state that was identical
to the susceptible state but assumed to have a reduced
probability of reinfection due to immunity.

Individual-based model calibration and application
Several historical population-wide events were simulated
in the individual-based model. During each simulation
the model was seeded and run for a specified burn-in
period. With a burn-in period of 100 simulated years, in-
cidence and mortality were observed to be stable in the
different groups in the model, consistent with endemic
TB. HIV, DOTS, and ART were introduced at simulated
years 1985, 2002, and 2007, respectively, representing
country-wide trends.

The model was calibrated to TB incidence in mining
areas measured during the Thibela TB study [21] and
TB incidence and mortality at the country level for mul-
tiple years [37]. Parameters for the transmission rate in
mining areas and immunity to reinfection following pre-
vious TB exposure were varied during calibration. The
transmission rate in mining areas was parameterized as
a multiple of the base transmission rate and represented
the aggregate environmental factors, e.g., reduced venti-
lation rates, that may increase Mtb transmission in
mines. A likelihood score for each parameter combin-
ation was computed using a likelihood function based
on a normal distribution where the differences between
published high and low estimates of incidence and mor-
tality were taken to represent 95% Cls and the three
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epidemiological indicators were equally weighted. The
joint posterior distribution of the two parameters condi-
tional on the data were estimated via incremental mix-
ture importance sampling (IMIS) [38]. The joint
distribution was found to be unimodal and strongly
peaked; therefore, parameters for subsequent simula-
tions were set at the maximum a posteriori estimate
(joint posterior distribution, Additional file 1: Figure
S2A; marginal distributions, Figure S2B, S2C in Add-
itional file 1). For consistency, the values for these pa-
rameters were also used in the spreadsheet model. The
posterior estimate of the reduction in susceptibility to
reinfection was similar to previous estimates of bacille
Calmette-Guerin (BCG) protection against active dis-
ease, 0.58 (95% CI 0.35—-1.01) [39]. Technical details re-
garding the calibration procedure are available in
Additional file 1.

To measure the incidence attributable to mine workers
using the individual-based model, we simulated two
counterfactual scenarios: first, having no Mtb transmis-
sion in the mines and, second, having no Mtb transmis-
sion in any area. These scenarios were identical to the
baseline scenario until simulated year 2012 when Mth
transmission was stopped in the model. Other processes
such as disease progression continued unchanged. The
numbers of new cases of active disease between simu-
lated years 2014 and 2019 were counted for each coun-
terfactual scenario and compared to the baseline
scenario. This calculation was repeated for each resi-
dency group in the model.

Results

Most force of infection in communities is attributable to
local residents

We used a static risk model to calculate the FOI and
number of transmission events (new infections) in differ-
ent mining-related communities in South Africa and
predict the near-term (following-year) incidence in these
communities (Fig. 1a). The model accounted for a num-
ber of factors including a higher rate of Mtb transmis-
sion due to environmental factors and the amount of
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time that residents reported spending in their own ver-
sus other communities, where mixing was assumed to
be proportional to the time spent in each community
(Fig. 1b).

As a check on the static risk model, we compared FOI
output from the model to data on the annual risk of TB
infection (ARTI) in children. Under baseline parameters,
we estimated FOI to be 21.2% (95% CI 16.4-26.1%) in
mine workers, 4.3% (95% CI 4.3-4.3%, indicating a dif-
ference of <0.05%) in peri-mining residents, 5.8% (95%
CI 5.8-5.8%) in labor-sending residents, and 3.5% (95%
CI 3.5-3.5%) in other South African residents (Table 1,
Additional file 1: Table S5). CIs were derived by sam-
pling parameter values for mine-specific transmission
and immunity following previous infection. The FOI es-
timate for other South African residents in the model
was found to be consistent with available ARTI mea-
surements: 2.5-4.2% (across Western Cape, 2005, [40]),
3.8-4.5% (in Cape Town, 2005, [41]), 3.9-4.8% (in Cape
Town, 2009, [42]), and 2.1-5.2% (in Johannesburg, 2013,
(43]).

Using the static risk model, we then calculated the
fraction of FOI in each community attributable to each
residency group. We estimated that the majority of each
community’s FOI was attributable to local residents: 93.
9% (95% CI 92.4-95.1%), 91.5% (95% CI 91.4-91.5%),
94.7% (95% CI 94.6-94.7%), and 98.8% (95% CI 98.8-98.
8%) in mining, peri-mining, labor-sending, and other SA
communities, respectively (Table 1, Additional file 1:
Table S5). Despite the amount of time mine workers
were assumed to spend in other areas (up to 20% per
annum), the FOI in peri-mining, labor-sending, and
other SA communities attributable to mine workers was
estimated to be 5.8% (95% CI 5.8-5.8%), 3.6% (95% CI 3.
5-3.6%), and 0.1% (95% CI 0.1-0.1%), respectively.

Gold mine workers contribute more TB infections per
capita than other residents

Using the preceding FOI and data on susceptible indi-
viduals, ie., either uninfected or latently infected but
susceptible to reinfection, we estimated the number of

Table 1 Force of infection (per-susceptible rate of infection) attributable to each population

From mining From peri-mining From labor-sending From other SA From all

residents residents residents residents residents
Among mining 200 107" 441 x107° 698 x 1072 132x107° 212% 107
residents (94.0%) (2.1%) (3.3%) (0.6%) (100%)
Among peri-mining 248 x 107 390 x 107 573x 107" 593 % 107 427 x 107
residents (5.8%) (91.5%) (1.3%) (1.4%) (100%)
Among labor-sending 209 x 1073 304 x 107 552 % 1072 688 x 107 583 x 1072
residents (3.6%) (0.5%) (94.7%) (1.2%) (100%)
Among other SA 388 x 107 315%107* 6.80 X 107° 345x 107 351 %107
residents (0.1%) (0.2%) (0.2%) (98.8%) (100%)

Per-annum rate and percentage of total from all groups using mean of Monte Carlo simulations from the spreadsheet model
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new infections expected to occur in each community
and compared these results to published TB incidence
for different communities. For mine workers and the
overall population, we estimated TB incidence to be
2963 (95% CI 2208-3858) and 989 (95% CI 980-1000)
per 100,000 individuals, respectively. These were simi-
lar to published values for these communities, 2957 (in
control cluster mines during the Thibela TB study,
between 2006 and 2010 [21]) and 977 (717-1276) (in
South  Africa, 2008 [20, 44]) per 100,000
(Additional file 1: Table S6).

Using the static risk model, we also estimated the
fraction of infections occurring each year attributable
to each residency group. Out of the overall number
of new infections occurring in South Africa per
annum, we estimated that 4.0% (95% CI 2.6—5.8%), 5.
0% (95% CI 4.5-5.5%), and 9.0% (95% CI 8.8-9.1%)
were attributable to mining, peri-mining, and labor-
sending residents, respectively (Table 2,
Additional file 1: Table S7). When scaled to the frac-
tion of the overall population in South Africa that
each group represents, mine workers, peri-mining
residents, and labor-sending residents contributed 4.
32 (95% CI 2.77-6.15), 1.21 (95% CI 1.09-1.34), and
1.39 (95% CI 1.36-1.41) times as many infections as
South Africans as a whole (Table 2, Additional file 1:
Table S7). Similarly, when scaled to the fraction of
the overall number of prevalent cases in South Africa
found in each group, mine workers, peri-mining resi-
dents, and labor-sending residents contributed 1.62
(95% CI 1.04-2.30), 1.14 (95% CI 1.02-1.25), and 1.
07 (95% CI 1.05-1.09) times as many infections as
South Africans as a whole (Table 2, Additional file 1:
Table S7). Therefore, while mine workers contribute
a larger number of infections on a per-capita or per-
prevalent case basis than other South Africans, the
majority of these infections occur among mine
workers themselves.
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Local recent transmission is the source of the majority of
incident TB cases in gold mines

To measure the impact of Mth transmission in the
mines on incidence, we used a dynamic, individual-
based model of TB in South Africa. In this model we
accounted for longer-term demographic changes and
additional pathways leading to active disease including
reactivation from transmission occurring over a longer
time window. We calibrated the model to several epi-
demiological indicators including incidence and mortal-
ity over multiple years [21, 37]. Model estimates of TB
incidence and mortality overlapped published ranges,
both at the country level (Fig. 2a, b; Additional file 1:
Figure S3A, S3B) and at the mining level (Fig. 2c, d;
Additional file 1: Figure S3C, S3D). In particular, model
incidence reproduced measurements from the Thibela
TB study, showing a threefold higher incidence in the
mines compared to South Africa overall (Fig. 2a, c).
Model incidence in the mines preceding the Thibela TB
study was exceeded 4000 per 100,000 (Fig. 2c), consist-
ent with previous studies on mine workers [45]. Model
mortality due to TB among mine workers was approxi-
mately 1% per annum (Fig. 2d), which was consistent
with a range that includes the 0.9% all-cause mortality
rate and 4.3% all-cause mortality-plus-medically boarded
rate observed as a secondary outcome of the Thibela TB
study [21]. As an additional test of the model, including
South Africa-specific parameters derived from calibra-
tion, we used the model to simulate the Thibela TB
study intervention of widely available preventive therapy.
Following a cessation of the intervention, we observed a
rebound in model incidence similar to the rebound ob-
served during the Thibela TB study (Additional file 1:
Figure S4A).

To estimate the fraction of incident cases attributable
to gold mines, we simulated a counterfactual scenario of
stoppage of Mtb transmission in mining areas and mea-
sured the subsequent change in incidence over several

Table 2 New infections in all South Africa attributable to each population

From mining From peri-mining From labor-sending From other SA From all

residents residents residents residents residents
New infections among 6.25 x 10* 7.77 x 10* 138 % 10° 126 x 10° 154 x 10°
all SA residents (4.1%) (5.0%) (9.0%) (81.9%) (1009%)
Population size of 485 % 10° 214 % 10° 335 % 10° 458 x 107 518 x 10°
attributable source (0.9%) (4.1%) (6.5%) (88.4%) (1009%)
Ratio of new infection 433 1.22 1.39 0.93 1.00
%:population %
Prevalence est. 1.04 x 10° 184 x 10* 347 x 10* 352 10° 415 % 10°
in attributable source (2.5%) (4.4%) (8.4%) (84.7%) (100%)
Ratio of new infection 162 1.14 1.07 097 1.00

Y%:prevalence %

Number of cases and percentage of total; ratio of percentage of total infections to percentage of total population that each group represents; and ratio of
percentage of total infections to percentage of total prevalence that each group represents, using mean of Monte Carlo simulations from the static risk model



Chang et al. BMC Medicine (2018) 16:52

Page 8 of 12

1600
1400
1200
1000

s00 - |
400} '
200

& Peri-mining
Labor-sending

# Other SA

-« Overall population

2015 2020

Incidence (per 100 000)
@
o
o

2010
Year

0 .
2000 2005

(7]

7000
6000
5000
4000
3000

Incidence (per 100 000)

2000
1000

# Mine workers

2020

0
2000 2005 2010

Year

2015

4000

# Mine workers

3500

3000

2500

2000

Measure change
in incidence

1500

Incidence (per 100 000)

1000

Simulate stoppage
of transmission

500

2012 2014 2016

Year

2018 2020

in incidence between simulated years 2014 and 2019

Fig. 2 Simulated time series of the TB epidemic in different communities in South Africa. Means and 95% Cls were derived from 200 stochastic
realizations of the model where input parameters were set at the mode of the posterior distribution of two calibration parameters. a TB incidence in
peri-mining, labor-sending, and other South Africa residents. b TB mortality in peri-mining, labor-sending, and other South Africa residents. In a and b,
the population-weighted mean of the four populations in the model is also shown. ¢ TB incidence in mine workers. d TB mortality in mine workers.

e Methodology for computing the fraction of incidence attributable to recent Mtb transmission in the mines. The upper curve is identical to the curve
in ¢, while the lower curve represents the mean and 95% Cl of stochastic realizations that were identical to ¢ until simulated year 2012, after which Mtb
transmission from mine workers was stopped but all other aspects of the model remained unchanged. Attribution was calculated from the difference

b

450
400

& Peri-mining
Labor-sending

& Other SA

== Overall population

Mortality (per 100 000)

50

2010 2015

Year

0 .
2000 2005 2020

1600
1400
1200
1000
800
600
400
200

0
2000

Mortality (per 100 000)

& Mine workers

2005 2010

Year

2015 2020

years (Fig. 2e). By doing so, we estimated that recent
Mtb transmission in the mines contributed 58.2% (95%
CI 57.8-58.9%), 4.8% (95% CI 4.3—-5.2%), and 4.9% (4.4—
5.2%) of the TB incidence in mining, peri-mining, and
labor-sending residents, respectively (Table 3). Among
other residents of South Africa, the counterfactual sce-
nario had a smaller effect that resulted in a time course
that overlapped the baseline scenario at all time points,
i.e., within the stochastic noise of the simulation
(Table 3). In South Africa as a whole, the fraction of TB
incidence due to recent Mtb transmission in the mines
was estimated to be 2.4% (95% CI 1.4-3.3%) (Table 3).
To test the robustness of this measurement, we per-
formed a series of one-way sensitivity analyses based on
varying the infectiousness in each community separately
(mining, peri-mining, labor-sending, and other South

Africa). In all cases, the resulting fraction of TB
incidence due to recent Mtb transmission in the
mines was found to vary maximally between 1 and
4% (Additional file 1: Figure S5).

As a second counterfactual scenario, we simulated
stoppage of transmission in all areas of South Africa and
calculated the fraction of incident cases attributable to
recent transmission from any source. Among mining
residents, 63.0% (95% CI 58.5-67.7%) of the incident
cases were predicted to result from recent transmission,
92.5% (95% CI 92.1-92.9%) of which were attributable to
recent transmission in mining areas (Table 3). In con-
trast, among all South African residents, 37.4% (95% CI
35.2-40.0%) of the incident cases were predicted to re-
sult from recent transmission, 3.7% (95% CI 3.0-4.4%)
of which were attributable to recent transmission in
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Table 3 Incidence attributable to recent transmission in mining areas

From recent transmission  From recent transmission
in all areas (col. 2)

in mining areas (col. 1)

Fraction of all incidence due to recent transmission
that is attributable to mining areas (col. 1/col. 2)

Incidence among mining residents 58.2% 63.0% 92.5%

(57.8%, 58.9%) (58.5%, 67.7%) (92.1%, 92.9%)
Incidence among peri-mining residents ~ 4.8% 39.3% 11.4%

(4.3%, 5.2%) (35.4%, 43.2%) (10.2%, 12.7%)
Incidence among labor-sending residents  4.9% 39.5% 11.6%

(44%, 5.2%) (35.9%, 43.2%) (10.7%, 12.6%)
Incidence among other SA residents 0.0% 36.3% -04%

(~0.2%, 0.3%) (33.7%, 38.9%) (—1.3%, 0.4%)
Incidence among all residents 24% 374% 3.7%

(1.4%, 3.3%)

(35.2%, 40.0%)

(3.0%, 4.4%)

Using the individual-based model, transmission ceased in mines (column 1) or in the entire population (column 2) beginning in year 2012, and differences in
incidence were measured between years 2014 and 2019. Mean and 95% Cl are shown using parameters with highest likelihood from model calibration

mining areas (Table 3). These figures were consistent
with local Mtb transmission in mines being the source
for the majority of incident TB cases in the mines but
only a small fraction of the incident TB cases in the re-
mainder of the country.

Discussion

Using two different modeling approaches, we found
that gold mine workers are likely to be contributing to
the TB burden in South Africa but primarily at the level
of their own communities and not the larger population
of South Africa, owing to the generalized nature of the
TB epidemic in South Africa. Using a static risk model,
we captured several parameters that determine the ex-
tent of Mtb transmission from mine workers: the size
of different populations with whom mine workers inter-
act, the prevalence of latent infection and active disease
in each population, and the amount of time that resi-
dents from different populations spend with each other.
Our model suggests that gold mine workers who num-
ber less than 0.5 M (< 1% of the population in South
Africa) contribute approximately 4% of new infections
in South Africa per annum. By comparison, residents in
peri-mining and labor-sending areas who number ap-
proximately 2.1 M and 3.4 M (4% and 7% of the popu-
lation) contribute approximately 5% and 9% of new
infections in South Africa per annum, respectively.
Therefore, mine workers contribute a disproportion-
ately large number of new infections, as one might ex-
pect given their higher rates of disease and the setting
in which they work. However, given their mixing pat-
terns and other factors which we included in the model,
we found that the effect is mostly at the level of their
own communities. These factors include the amount of
time that residents spend in other communities, which
we estimated to be less than 25% per year, and the lim-
ited number of susceptibles available in other commu-
nities. For example, in high-burden areas such as peri-
mining and labor-sending areas, more than 50% of the

population may already be latently infected, reflecting a
high FOI in these areas [42, 46].

We obtained similar results with an individual-based
model which we used to simulate a counterfactual sce-
nario of curtailed Mtb transmission in the mines for a
period of more than 2 years. Using this approach, we
estimated that 4% of the incidence in all of South Africa
could be traced to recent transmission in the mines,
similar to the attributable fraction of new infections.
However, among mine workers themselves, greater than
50% of the incident cases could be traced to recent
transmission in the mines, suggesting that ongoing
transmission among mine workers continues to have a
significant effect. This was consistent with results from
Godfrey-Faussett and colleagues, who genotyped Mtb
strains from mine workers and found that at least 50%
of TB cases were due to transmission within the
mines [47], as well as other studies showing a high
degree of strain clustering in different parts of South
Africa [46, 48, 49]. However, a more recent study of
the Thibela TB study site by Mathema and colleagues
has suggested that the fraction of incident TB cases
in the mines due to recent infection may be lower
than previously measured [50]. Additional work is
needed to explain the differences in these results and
connect results such as ours, based on simulation and
counterfactuals, to results based on genetic clustering
and molecular epidemiology.

Nonetheless, our results suggest that curtailing trans-
mission in the mines may have a measurable impact on
the number of new cases of TB disease in the mines on
a relatively short time frame, within 5 years or less.
This is similar to the time frame posited by Vynnycky
and colleagues, who used modeling to simulate a set of
mine-targeted interventions such as reduced treatment
delay and scaled-up ART and found it was possible to
obtain a significant impact [15]. Given our results and
those of Vynnycky et al, health officials may wish to
consider measuring the extent of recent transmission,
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such as through Mtb strain genotyping, on an ongoing
basis. A decrease in the proportion of cases that cluster
genotypically is expected to accompany effective pro-
grams and would provide additional evidence of the ef-
fectiveness of TB control programs.

Our study complements past efforts to measure the
association between TB burden and mining such as the
study by Stuckler and colleagues [51]. In that study, each
10% increase in mining production was associated with
a 0.9% increase in TB incidence [51]. Our approach did
not include mining production as a covariate, precluding
a direct comparison of the results. In addition, we fo-
cused on the ongoing contribution of mine conditions,
which differed from the focus of Stuckler et al. on his-
torical mining production. Despite these differences,
both our study and that of Stuckler et al. point to the
need to consider mining in a larger context, whether
that be population mixing or other comorbidities. For
example, Stuckler et al. found that most of the effect of
mining on TB was mediated by HIV prevalence; control-
ling for HIV greatly reduced the association with mining
[51]. In our models, HIV plays a similarly large role and
increases the activation rate of latent disease in all
groups including mine workers. The large effect of HIV
relative to mining production can also be seen directly
by comparing the time courses for mining production,
HIV prevalence, and TB incidence in South Africa.
While mining production has decreased over the last
two decades [52], TB incidence has more closely mir-
rored HIV prevalence, only beginning to decline after
2010 [53]. As ART usage continues to increase and HIV
prevalence stabilizes, it will be interesting to observe
whether decreases in mining production have a more
discernible effect on TB incidence. Additional questions
include whether decreasing mining production or Mtb
transmission in the mines would have a different effect
depending on HIV prevalence 5, 10, or 15 years in the
future and more generally whether the impact of
hotspot-targeted approaches depends on prior HIV con-
trol and whether hotspot targeting should be coordi-
nated with HIV control programs. We plan to explore
these questions in future applications of the model.

Our study also contributes to the growing literature
on using quantitative approaches to investigate potential
TB hotspots. Recently, Dowdy and colleagues used a
model to study high TB burden areas in Rio de Janeiro,
Brazil [54]. In that study, areas that comprised 6% of the
city population were found to contribute 35% of the new
infections in the city, resulting in a 5.8:1 attributable in-
fection:population size ratio. This compares to the 4.3:1
attributable infection:population size ratio that we found
for mine workers (Table 2). As the quality of TB moni-
toring and evaluation improves globally, it may be useful
to define a set of functional criteria for TB hotspots, e.g.,
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what attributable infection:population size ratios qualify
an area to be a hotspot and how many susceptibles need
to reside in the larger population for a hotspot to pose a
risk. To encourage discussions in this area, we have
made many of these outputs, along with modifiable as-
sumptions, accessible in our spreadsheet model.

While we accounted for several factors in our study,
including HIV, silicosis, and population mixing, a num-
ber of assumptions would benefit from additional study.
For example, our results assume that the prevalence of
latent infection and active disease in the peri-mining
and labor-sending areas was at least as high as those
found in the general population of South Africa. While
this is supported by historical data [1, 2] and available
case notification data [55], our estimates could be im-
proved with accurate measurements in these areas,
such as may become available from future prevalence
surveys in South Africa. The number of populations
that are included in the models could also be expanded
to include foreign workers. Although the proportion of
workers from countries outside of South Africa has de-
creased in recent decades, a more comprehensive ac-
counting should include other countries in southern
Africa including Lesotho, Swaziland, and Mozambique
[56]. Finally, how we represent mixing could also be re-
fined to account for different scales. While we informed
mixing in our models using tourism and labor
migration data, these provide only a proxy of mixing
and exclude more local influences, such as interactions
within mining areas and hostels and on public trans-
port [57, 58]. Investigating Mtb transmission at more
granular levels may lead to more actionable findings for
mitigating risk.

Despite these caveats, we believe our models account
for the main factors likely to govern the contribution of
gold mines to the TB epidemic: the size of the mine
worker population, the TB burden in mine workers and
other groups, and the amount of time mine workers
spend in different areas. Together these factors suggest
Mtb transmission in gold mines continues to feed infec-
tions in mines and mining-related communities but to a
much smaller extent in the country as a whole. In evalu-
ating the impact of interventions designed to curtail
transmission in the mines, the effect on both scales
should be considered.

Conclusions

Using two models that integrate diverse types of data,
we estimate that gold mine workers contribute a dis-
proportionately large number of Mtb infections in
South Africa on a per-capita basis. However, due to
their relatively small population and the generalized na-
ture of the TB epidemic in South Africa, gold mine
workers contribute only a small fraction of the total
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number of Mtb infections in South Africa. Our results
suggest efforts at curtailing transmission in the mines
may have limited impact at the country level despite a
potentially significant impact on a relatively short time
frame in the mines themselves.
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