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Glycolysis-associated IncRNAs identify a
subgroup of cancer patients with poor
prognoses and a high-infiltration immune
microenvironment
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Abstract

Background: Long noncoding (INc)RNAs and glycolysis are both recognized as key regulators of cancers. Some
IncRNAs are also reportedly involved in regulating glycolysis metabolism. However, glycolysis-associated IncRNA
signatures and their clinical relevance in cancers remain unclear. We investigated the roles of glycolysis-associated
INncRNAs in cancers.

Methods: Glycolysis scores and glycolysis-associated IncRNA signatures were established using a single-sample
gene set enrichment analysis (GSEA) of The Cancer Genome Atlas pan-cancer data. Consensus clustering assays and
genomic classifiers were used to stratify patient subtypes and for validation. Fisher's exact test was performed to
investigate genomic mutations and molecular subtypes. A differentially expressed gene analysis, with GSEA,
transcription factor (TF) activity scoring, cellular distributions, and immune cell infiltration, was conducted to explore
the functions of glycolysis-associated INncRNAs.

Results: Glycolysis-associated IncRNA signatures across 33 cancer types were generated and used to stratify
patients into distinct clusters. Patients in cluster 3 had high glycolysis scores and poor survival, especially in bladder
carcinoma, low-grade gliomas, mesotheliomas, pancreatic adenocarcinomas, and uveal melanomas. The clinical
significance of IncRNA-defined groups was validated using external datasets and genomic classifiers. Gene
mutations, molecular subtypes associated with poor prognoses, TFs, oncogenic signaling such as the epithelial-to-
mesenchymal transition (EMT), and high immune cell infiltration demonstrated significant associations with cluster 3
patients. Furthermore, five INCRNAs, namely MIR4435-2HG, AC078846.1, AL157392.3, AP001273.1, and RAD51-AST,
exhibited significant correlations with glycolysis across the five cancers. Except MIR4435-2HG, the IncRNAs were
distributed in nuclei. MIR4435-2HG was connected to glycolysis, EMT, and immune infiltrations in cancers.
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Conclusions: We identified a subgroup of cancer patients stratified by glycolysis-associated IncRNAs with
poor prognoses, high immune infiltration, and EMT activation, thus providing new directions for cancer

therapy.

Keywords: Long noncoding RNAs (IncRNAs), Glycolysis, MIR4435-2HG, Epithelial-to-mesenchymal transition

(EMT), Immune infiltrations

Background

Cancer is regarded as a type of metabolic disease. Tumor
cells can drive certain metabolic pathways to sustain
their biological processes for growth and to adapt to
complex tumor microenvironments (TMEs) [1]. A well-
established metabolic pathway that plays a prominent
role in cancer progression is glycolysis, which is critical
for supplying energy and producing metabolic end prod-
ucts, thus maintaining tumor cell survival [2]. In addition
to its functions in sustaining tumor growth, activation of
glycolysis affects other phenotypic changes. For example,
lactic acid produced by the glycolysis pathways induces
the epithelial-to-mesenchymal transition (EMT) in lung
cancer cells [3]. Furthermore, a pan-cancer study reported
that activated glycolysis is correlated with increasing
tumor immunity [4]. Hence, understanding the underlying
relationship between glycolysis and cancer progression is
a critical goal in cancer research.

Long noncoding (Inc)RNAs, which are longer than 200
nucleotides, can modulate gene expressions through
various mechanisms. Several oncogenic signaling path-
ways, such as the cell cycle [5], immune regulation [6],
and EMT mediation [7], are linked to IncRNA regula-
tion. Different types of IncRNAs have been revealed to
promote glycolysis activation. In breast cancer, IncRNA-
SNHG?7, which is promoted by c-MYC regulation, can in-
crease glycolysis through inhibiting miR-34a-5p expres-
sion [8]. Another IncRNA, long intergenic noncoding
RNA for IGF2BP2 stability, suppresses the degradation of
IGF2BP2 by inhibiting the ubiquitination—autophagy
pathway, leading to glycolysis upregulation in colorectal
cancer [9]. However, most studies have focused only on
particular IncRNA candidates and their functions in pro-
moting glycolysis. Therefore, we systematically investi-
gated the association of IncRNAs with glycolysis in
different cancer types and explored their related signaling
pathways and clinical relevance.

In this study, we used pan-cancer data from The Cancer
Genome Atlas (TCGA) to identify glycolysis-associated
IncRNAs across 33 tumor types. We performed a consen-
sus clustering analysis to classify these glycolysis-associated
IncRNAs into distinct clusters. We then identified
glycolysis-associated IncRNAs that exhibited key clinical ef-
fects in five cancer types. Finally, we explored the potential
pathways and functions of glycolysis-correlated IncRNAs in

association with oncogenic signaling such as EMT and im-
mune regulation.

Methods

TCGA pan-cancer data analysis and identification of
cancer-expressing IncRNAs

Genomic profiles including RNA sequencing (RNA-Seq)
data, gene-level copy number, DNA methylation, and
patient clinical characteristics of 33 TCGA cancer types
were downloaded from UCSC Xena (https://xena.ucsc.
edu/). Raw counts of RNA-Seq data were normalized to
counts per million (CPMs). Gene-level copy number
values were calculated using GISTIC2.0. Beta values de-
rived from Illumina human methylation 450K arrays
were used to analyze TCGA DNA methylation changes.
LncRNA annotation was retrieved from GENCODE,
which contains 17,910 IncRNAs. In total, 15,121
IncRNAs were detected in TCGA RNA-Seq data. We
defined an IncRNA as that expressed in a certain cancer
type if the gene count was >10 in more than 90% of
patients.

Identification of glycolysis-associated IncRNAs and
categorization of cancers into subtypes

To evaluate the degree of glycolysis activation in cancer
patients, expressions of glycolysis-involved genes, de-
rived from the Hallmark glycolysis pathway [10], were
examined to infer glycolytic activity through a single-
sample gene set enrichment analysis (ssGSEA) method
in the GSVA package. In each cancer type, we retained
glycolysis-involved genes that were expressed in more
than 90% of cancer patients with gene counts of > 10,
and gene candidates that did not fit these criteria were
excluded (Additional file 1: Table S1). The expressed
IncRNAs were correlated with glycolysis scores in each
cancer type by performing Pearson correlation analyses.
LncRNAs with a false discovery rate (FDR) of < 0.05 and
an absolute R of > 0.3 were considered to be significantly
associated with glycolysis signaling. A consensus cluster-
ing method, according to de Jong et al.’s study [11], was
performed to classify cancer patients into distinct clinic-
ally relevant subgroups based on glycolysis-correlated
IncRNAs. Partitioning around medoids was used as the
clustering algorithm. One thousand permutations with a
0.95 random fraction of IncRNAs in each iteration were
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repeated to perform the clustering analysis. Based on the
delta area plot, the optimal cluster was selected accord-
ing to whether no appreciable increase was present
(Additional file 2: Figure S1). Then, survival differences
among distinct clusters were evaluated using the log-
rank test, and glycolysis scores within different groups
were compared by employing the Kruskal-Wallis test
with post hoc Dunn’s test.

Development of genomic classifiers in bladder carcinoma
and low-grade gliomas

To characterize genetic signatures permitting the distin-
guishing of glycolysis-associated IncRNA-based clusters in
cancer patients, gene candidates that exhibited a distinct
expression pattern among three clusters were identified.
Specifically, we selected gene candidates that were consist-
ently upregulated (FC > 1.5 and FDR < 10 *) or downregu-
lated (FC < 0.7 and FDR < 10™ %) in cluster 3 versus cluster
2, and cluster 2 versus cluster 1. In total, 174 upregulated
and 49 downregulated genes were identified in low-grade
gliomas (LGGs; Additional file 3: Table S2). In bladder
carcinoma (BLCA), 121 genes were upregulated and 112
downregulated (Additional file 3: Table S3). A lasso penal-
ized multinomial logistic regression with 10-fold cross-
validation was performed to shrink the number of these
gene candidates. After identifying the lambda value that
provided a minimum mean cross-validated error, the
value was applied to penalize our gene signature and thus
build the genomic classifier. The 233 gene candidates in
BLCA and 223 gene candidates in LGG were shrunk to 26
and 46 gene candidates, respectively (Additional file 4:
Table S4 and S5). Then, this genomic classifier was used
with the independent microarray data of glioma
(GSE16011 and GSE107850) and BLCA (GSE48075 and
GSE13507). However, due to the presence of different
platforms for the TCGA RNA-Seq data and GEO micro-
array data, we performed quantile normalization on both
the datasets by using preprocessCore package before
building the genomic classifier.

Comparisons of molecular differences including genomic
mutations and molecular subtypes within different
glycolytic signature-classified groups of cancers

Genomic mutation data of BLCA, LGGs, mesotheliomas
(MESOs), pancreatic ductal adenocarcinomas (PAADs),
and uveal melanomas (UVMs) were retrieved from
UCSC Xena (https://xena.ucsc.edu/). These mutation
data, generated by the Multi-Center Mutation Calling in
Multiple Cancers (MC3) project, were derived from
exon sequencing of TCGA cancer patient samples, and
genes were categorized into binary calls as either nonsi-
lent mutation or wild-type. Fisher’s exact test was per-
formed to investigate genomic mutations that were
significantly enriched (with a p value of <0.01) in
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glycolysis score-classified cluster 3 or cluster 1 cancer
patients. The identified mutation within each cancer
type was shown as a heatmap. To compare established
molecular subtypes with the glycolysis signature-
classified groups, we selected two cancer types (LGG
and BLCA) to perform the analyses; the types have been
classified as different groups in other studies [12, 13].
Fisher’s exact test was conducted to examine whether
glycolysis score-stratified cluster 3 or cluster 1 patients
were enriched in certain molecular types.

Differentially expressed gene analysis, GSEA, and TF
activity scoring

To explore the transcriptome that exhibits distinct ex-
pression patterns within glycolysis score-stratified clus-
ters, we used CPM-normalized counts from RNA-Seq
data to perform a differentially expressed gene (DEG)
analysis by using the edgeR package. Gene candidates
were ranked based on log2 multiples of change to con-
duct a GSEA with 10* permutations to calculate the nor-
malized enrichment score (NES), and a pathway with an
FDR of <0.01 was considered significant enrichment.
The Hallmark pathway database [10] was utilized to per-
form the analysis. To explore signaling pathways that
were activated in cluster 3 cancer patients, activated sig-
naling pathways in the poor prognosis patients (cluster
3) compared with good prognosis patients (cluster 1)
were shown as a heatmap. To identify signaling path-
ways exhibiting different degrees of activation among
distinct cluster cancer patients, we presented NESs de-
rived from cluster 3 versus cluster 1 and cluster 2 versus
cluster 1 in radar plots. To identify activated transcrip-
tion factors (TFs) in cluster 3 cancer patients compared
with cluster 1 patients, we scored TF activity by follow-
ing a methodology developed by Garcia-Alonso et al
[14]. In brief, they defined a set of high-confidence hu-
man TFs and their target genes based on public re-
sources including TF-binding site predictions, text-
mining-derived and manually curated TF-target interac-
tions, and chromatin immunoprecipitation coupled with
high-throughput data (ChIP-X). RNA expressions of
these TF targets were utilized to infer TF activity per pa-
tient by using analytical rank-based enrichment analyses
(aREAs). TF activation levels among clusters were com-
pared using analysis of variance (ANOVA), and an effect
size of >0.5 was considered a difference. Upregulated
TFs in cluster 3 patients were used to perform a func-
tional annotation test by using DAVID (https://david.
ncifcrf.gov/tools.jsp).

Investigation of localization of glycolysis-associated
IncRNAs

The IncALTAS database [15] was used to investigate the
possible localization of glycolysis-associated IncRNAs in
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cancer cells. This database contains RNA-Seq data from
the cytoplasmic and nuclear compartments of 15 cell
lines. In total, 6768 GENCODE-annotated IncRNAs
were detected. Furthermore, a relative concentration
index (RCI) was developed to characterize the distribu-
tion of IncRNAs in nuclear and cytoplasmic regions. In
brief, this index was calculated using the log ratio of the
concentration of a given RNA molecule per unit mass of
RNA between its cytoplasmic and nuclear compart-
ments. A positive RCI value indicates that an IncRNA
has a higher concentration in the cytoplasmic region. By
contrast, a negative value means that an IncRNA is more
abundant in the nuclear region.

Calculation of immune cell infiltration scores and an
unsupervised hierarchical clustering analysis

To infer immune cell infiltration based on transcriptome
profiles, we followed the method reported by Senbabao-
glu et al. [16]. Briefly, different gene markers of immune
cells were utilized as gene sets and used to perform an
ssGSEA to obtain an immune cell infiltration score for
each patient. Then, these immune cell infiltration scores
were utilized to perform unsupervised hierarchical clus-
tering. The distance of each patient was calculated using
the Euclidean method, and clustering was performed
using Ward’s method. Results are illustrated as a heat-
map by using the complex heatmap package. For im-
mune checkpoint comparisons, we queried the immune-
suppressive checkpoint gene list from HisgAtlas [17],
and we conducted ANOVA to compare their expres-
sions in different clusters stratified by glycolysis scores.
Checkpoints with an effect size of > 0.5 and a p value of
<0.01 were considered to significantly differ among the
three clusters.

First-order partial correlation and multivariate linear
regression analysis

A first-order partial correlation was performed to ex-
plore interlinks among IncRNAs, glycolysis scores, and
glycolysis-associated genes. The glycolysis score was as-
sumed to be x, and glycolysis-associated gene expression
was y. The first-order partial correlation between x and
y conditioned on IncRNAs was

Txy = FxIncRNAT'yIncRNA

TxylncRNA =
\/ (1= r%ncrna) (1 = 72yincrNA)

We compared the cumulative distribution of Pearson
correlation coefficients between glycolysis scores and
gene expressions with or without removing the effect of
IncRNA expression by using the Kolmogorov—Smirnov
test. To identify gene candidates that were correlated
with IncRNA expression and were independent of copy
number variations and DNA methylation, we performed
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a multivariate linear regression to adjust for these covar-
iates. We considered a gene candidate to be significantly
associated with an IncRNA when its absolute correlation
coefficient was > 0.3 and its FDR was < 10~

Results

Identification of cancer types that can be classified into
distinct prognostic groups based on glycolysis-associated
IncRNAs

To systematically investigate the roles of glycolysis-
associated IncRNAs in different cancer types, we ana-
lyzed TCGA pan-cancer RNA-Seq data that contained
33 tumor types from 10,121 tumor samples (Fig. 1la,
Additional file 5: Table S6). We used genes derived from
Hallmark glycolysis and performed an ssGSEA to infer
glycolytic activity (Additional file 6: Figure S2). By per-
forming the Pearson correlation analysis, we identified
1420 IncRNA candidates that were associated with
glycolytic activity in at least one cancer type. Most
(58.6%) of these IncRNAs were specifically correlated
with glycolysis in one cancer type. Because no preexist-
ing clusters were defined based on glycolysis-associated
IncRNAs, we employed an unsupervised machine learn-
ing algorithm, consensus clustering, to define these sub-
groups (Additional file 7: Figure S3). Distinct cluster
groups were classified for each cancer type. Most of the
IncRNAs in cluster 3 were found to be downregulated.
The overall survival among these cluster groups in each
cancer type was also compared using the log-rank test
(p <0.01). Cluster 3 patients in five cancer types—BLCA,
LGGs, MESOs, PAADs, and UVMs—demonstrated a
significant association with a poor prognosis (Fig. 1b, left
panel, Additional file 8: Table S7). Thus, we majorly fo-
cused the roles of glycolysis-associated IncRNAs on
these five cancer types. The results indicated that the
poor prognosis cluster group exhibited the highest gly-
colysis score across these five cancer types (Fig. 1b, right
panel), implying that IncRNAs interact with glycolysis
and cancer malignancy in these five cancers.

To validate the clinical significance of these IncRNA-
defined groups in cancers, we applied a lasso penalized
logistic regression, which was used for the preexisting
label classification to train our classifiers. Although we
attempted to validate the importance of these glycolysis-
associated IncRNA-stratified clusters with other inde-
pendent data, we discovered that public datasets were
established using microarray platforms that lacked the
expression information of numerous IncRNA candidates.
Therefore, we developed a genomic classifier based on
the protein coding gene signature that exhibited a dis-
tinct pattern among different clusters for validation with
the microarray data. Because sample sizes for PAAD
(n=177), MESO (n = 84), and UVM (1 = 80) were small,
we mainly focused on the effects of IncRNAs on BLCA
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uveal melanoma

Fig. 1 Identification of glycolysis-associated long noncoding (Inc)RNAs and their roles in cancer prognoses. a A flowchart demonstrating our
investigation of glycolysis-associated IncRNAs and their putative functions in cancers. b Kaplan-Meier plots indicating patient survival rates of
distinct clusters stratified by glycolysis-associated IncRNAs in five cancer types. Right panel presents glycolysis scores in different clusters. Cancer
patients were clustered into groups based on glycolysis-associated IncRNAs by performing a consensus clustering analysis. Optimal clusters were
selected by judging delta area plots where no appreciable increase was evident. Validation of the clinical importance of these glycolysis-
associated IncRNAs was derived from genomic classifiers from independent GEO data including GSE16011 and GSE107850 for gliomas (c) and
GSE13507 and GSE48075 for bladder cancer (d). Kaplan-Meier plots demonstrate patient survival rates of different groups. The right panel
displays glycolysis scores in different clusters. TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis; PCG, protein coding gene; TF,
transcription factor; BLCA, bladder carcinoma; LGG, low-grade glioma; MESO, mesothelioma; PAAD, pancreatic ductal adenocarcinoma; UVM,

(n=406) and LGG (n =524). Furthermore, the micro-
array data of PAAD, MESO, and UVM cancer patients
lacked survival information, limiting our validation of
the clinical importance of glycolytic IncRNA-stratified
clusters. Thus, we focused mainly on LGG and BLCA to
validate the clinical significance of the clusters. We iden-
tified 26 gene candidates in BLCA and 45 gene candi-
dates in LGGs by using the developed genomic
classifiers, which allowed discrimination within these
subgroups based on gene expression levels (Add-
itional file 9: Figure S4, Additional file 4: Table S4 and
S5). We then classified LGG and BLCA patients based
on distinct clinical features. The results obtained from
analyzing two independent databases for LGGs (Fig. 1c)
and BLCA (Fig. 1d) indicated that patients with poor
prognosis had high glycolysis scores. Moreover, we
found that not all the gene candidates that were selected
using genomic classifiers belonged to glycolysis path-
ways, which suggested that glycolysis-associated
IncRNAs can be linked to other, nonglycolytic signal
pathways to promote cancer malignancy.

Molecular characterization of subgroups classified by
glycolysis-associated IncRNAs in cancers
Next, we investigated molecular differences in distinct
cancers between patient subgroups classified by
glycolysis-associated IncRNA signatures. By comparing
genomic mutations within these patients, we determined
that several gene mutations were associated with differ-
ent IncRNA-associated groups (Fig. 2a). RB1, KRAS, and
BAP1 mutations were enriched in cluster 3 patients with
BLCA, PAADs, and UVMs, respectively. As for LGGs,
cluster 3 patients generally belonged to the IDH1 wild-
type group and had fewer TP53 and CIC mutations.
Previous studies have categorized TCGA BLCA, LGG,
PAAD, MESO, and UVM patients into different molecu-
lar types based on multiomic profiles [18—22]. Here we
compared these defined subgroups and tumor grades
with our classified groups by using glycolysis-correlated
IncRNA signatures (Fig. 2b). Cluster 3 patients with
LGG, BLCA, PAAD, or UVM exhibited higher tumor
grades. As for molecular subtypes, cluster 3 patients with
BLCA mainly belonged to the basal/squamous subtype,

which had the poorest prognosis and exhibited a highly
immune-infiltrated characteristic. Meanwhile, cluster 1
BLCA patients were mainly categorized into the luminal
papillary type, which had more favorable prognoses.
Similarly, in LGG patients, the mesenchymal subtype
tended to have poor survival, highly infiltrative immune
cells, and EMT activation, and the subtype was mainly
enriched in the cluster 3 group. By contrast, patients in
cluster 1 were enriched in the proneural and neural sub-
types. In PAAD patients, cluster 3 patients were mainly
enriched in squama cell subtypes that possessed acti-
vated hypoxia, inflammatory response, TGF-p signaling,
and MYC pathway activation. For cluster 1 patients, all
their histological types belonged to neuroendocrine,
which was excluded in the study that defined these mo-
lecular subtypes [20]. As for MESO and UVM, no names
were used to define their molecular types based on bio-
logical features. However, the cluster 4 patients of both
UVM and MESO that had the poorest prognosis in pre-
vious findings [21, 22] were highly overlapped with clus-
ter 3 patients in the present findings.

EMT and inflammation-regulated pathways exhibit
distinct patterns in glycolysis-associated IncRNA-classified
groups

To delineate underlying signal pathways associated with
glycolysis-related IncRNAs, we conducted a DEG ana-
lysis within different clusters (Additional file 10: Figure
S5). Signal pathways that were upregulated in the poor-
est prognosis group with the highest glycolysis scores in-
cluded EMT, inflammatory responses, and interferon
gamma signaling (Fig. 3a, b). Therefore, we inferred that
IncRNA-based cluster 3 patients exhibited an upregu-
lated status in the EMT and immune regulatory path-
ways; these IncRNAs might play critical roles in linking
glycolytic signaling, EMT, and immune-suppressive
microenvironments.

Patients with poor prognoses as classified by glycolytic-
associated IncRNAs exhibit a highly infiltrative immune
microenvironment

To further clarify differences in the immune microenvi-
ronments of cluster 1 and cluster 3 patients, we inferred
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like; PN, proneural; NE, neural; CL, classical; ME, mesenchymal

Fig. 2 Associations of genomic mutations and molecular subtypes in glycolysis-associated long noncoding (Inc)RNA-classified clusters. a A
heatmap showing gene candidates with nonsilent mutations enriched in certain clusters of bladder carcinoma (BLCA), pancreatic ductal
adenocarcinomas (PAADs), uveal melanomas (UVMs), and low-grade gliomas (LGGs). b Alluvial plots demonstrating comparisons of INncRNA-
stratified subgroups (Inc cluster) with tumor grade (grade) and molecular subtypes (subtype) in BLCA, LGG, mesotheliomas (MESO), PAAD, and
UVM. ND, not determined; BS, basal/squamous; LUM, luminal-like; Lum-inf, luminal infiltrated; Lum pap, luminal papillary; Neu, neuroendocrine-

immune cell infiltration scores in the five cancer types
by using the expression levels of gene markers in im-
mune cells. We then conducted unsupervised hierarch-
ical clustering to categorize patients into high and low
immune infiltration groups (Fig. 4a). We determined
that most cluster 3 patients belonged to a high immune
infiltration group. By contrast, cluster 1 patients mainly
belonged to a low immune infiltration group. Despite
the high infiltration of immune cells in cluster 3 pa-
tients, they still had the poorest prognosis. Hence, we
speculated that cluster 3 cancer patients might have up-
regulated immune-suppressive checkpoints that facili-
tated cancer cells to evade attack by immune cells.
Therefore, we compared the expression levels of known
immune-suppressive checkpoints in different clusters
(Fig. 4b). The results revealed that PDCD1, IDO1, and
CTLA4 were significantly upregulated in cluster 3 pa-
tients compared with cluster 1 patients in multiple can-
cer types (Fig. 4c). Taken together, these results suggest
that glycolysis-associated IncRNAs can be used to iden-
tify a subgroup of cancer patients with the poorest prog-
nosis. They also suggest that IncRNAs activate
oncogenic pathways including hypoxia and EMT and
promote a highly infiltrative immune tumor environ-
ment. Moreover, these cancer subsets may be vulnerable
to treatment with immunotherapies due to their
enriched immune targets.

Characterization of glycolysis-associated IncRNAs in
cancers

Studies have indicated that IncRNAs exhibit tissue-
specific expression patterns [23, 24]. Here we found that
glycolysis-associated IncRNAs also followed this rule.
Most of the IncRNAs were correlated with glycolytic ac-
tivity in only one cancer type (Fig. 5a). However, com-
mon candidates were still associated with glycolytic
activity across the five cancers, namely MIR4435-2HG,
AC078846.1, AL157392.3, AP001273.1, and RAD51-AS1
(Fig. 5b). The results implied that these five IncRNAs
participate in glycolytic signaling in several cancers. Fur-
thermore, most of the glycolysis-associated IncRNAs ex-
hibited a negative correlation with glycolytic activity
compared with protein coding genes (Fig. 5c). Because
the functionalities of IncRNAs differ based on their loca-
tion in the cellular compartment, we utilized the LncA-
TLAS database to investigate the localization of these

glycolysis-associated IncRNAs. We determined that
69.22% of the RCIs were negative, which suggests that
nearly 70% of IncRNAs were located in nuclei (Fig. 5d).
One group of TF activities was highly negatively corre-
lated with glycolysis-associated IncRNAs in nuclei
(Fig. 5e). As a previous study indicated [25], nuclear
IncRNAs function in chromatin organization, transcrip-
tional and post-transcriptional gene expression regula-
tion, and direct interactions with TFs to facilitate gene
expressions.

We then investigated associations between glycolysis-
associated IncRNAs and dysregulated TFs among the
five cancer types. Despite these cancers having distinct
IncRNA patterns correlated with glycolytic activity, they
shared common pathways and upregulated TFs in clus-
ter 3 cancer patients. Next, we focused on nuclear
IncRNAs that had distinct expressions in cluster 3 pa-
tients of the five cancer types. Four IncRNA candidates
were selected; MIR4435-2HG was excluded because it
was distributed mainly in the cytoplasm (Fig. 5f). Next,
we investigated differences in TF activity in glycolysis
activity-associated clusters. After conducting an aREA,
we inferred TF activity by examining the expressions of
TF downstream targets. Then, we identified putative up-
stream regulators that might be responsible for the poor
prognosis of cluster 3 cancer patients (Fig. 5g). The re-
sults indicated that 47 TF candidates were dysregulated
in the five cancers. Functional annotation analyses of
these TFs indicated that most of them were enriched in
mothers against decapentaplegic homolog (SMAD) pro-
tein complex assembly, cytokine-mediated signal path-
ways, and the transforming growth factor (TGF)-f signal
pathway (Fig. 5h). These results further implied the po-
tential roles of glycolysis-associated IncRNAs in cancer
immune regulation and EMT activation. Prominent TFs
involved in these pathways were HIF1A, FOS, JUN, the
SMAD family, and the STAT family (Fig. 5i). In addition,
the oncogenic TF, MYC, has been identified as a key
regulator of glycolysis. Therefore, we also investigated
the potential link between glycolysis-associated IncRNA-
stratified clusters and MYC regulation. In pathway ana-
lyses (Fig. 3a), MYC targets were significantly activated
in PAAD and MESO. In TF analyses, we observed a
moderate upregulation of MYC activity in the highly
glycolytic groups for BLCA, LGG, and UVM and a sig-
nificant upregulation in PAAD and MESO (Fig. 5j,
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Additional file 11: Figure S6). The results indicated that
these TFs—HIF1A, JUN, LEF1, and FOS—were nega-
tively correlated with four glycolysis-associated IncRNAs
across the five cancer types (Fig. 5k), suggesting that the
low expression of these IncRNA signatures was accom-
panied by glycolytic signaling and oncogenic TF activa-
tion. Based on the functional annotation analyses of
activated TFs, we determined that activated TGEF-f3-
mediating SMAD signaling pathways can be used to dis-
tinguish these three subtypes. Furthermore, TGEF-f-
mediating SMAD signaling pathways have been identi-
fied to be involved in regulating EMT [26] and immune
infiltration [27]. Therefore, we identified these three sub-
types as cluster 1 (low TGF-B/SMAD), cluster 2 (median
TGF-B/SMAD), and cluster 3 (high TGF-3/SMAD).

MIR4435-2HG interlinks glycolysis and its downstream
associated genes in cancers

Finally, we investigated which IncRNAs might potentially
be involved in the coexpression of glycolysis-related
genes. We performed a first-order partial correlation to
adjust correlation coefficients between glycolysis scores
and positively associated genes. We observed a signifi-
cant alteration in correlation coefficients in these
glycolysis-associated genes after adjusting for the effect
of mutually associated IncRNAs (Fig. 6a). In particular,
when the effects of MIR4435-2HG are removed, correla-
tions between glycolysis scores and associated genes sig-
nificantly decreased in the five cancer types. This
suggests that MIR4435-2HG plays a crucial role in link-
ing glycolysis and related signal pathways. Next, we per-
formed a multivariate linear regression to identify
MIR4435-2HG-associated genes by adjusting for other
covariates, including copy number alterations and DNA
methylation (Fig. 6b). MIR4435-2HG-associated genes
were linked to EMT and immune signaling across the
four cancer types of BLCA, LGG, UVM, and PAAD
(Fig. 6c). By contrast, no significantly associated genes
were identified in MESO. In addition, we observed that
MIR4435-2HG expression was positively associated with
MYC activity (which was reported to play prominent
roles in glycolysis regulation) across the five cancer types
(Additional file 12: Figure S7). Among the top 10
MIR4435-2HG-associated gene candidates in immune
signal pathways, cytokines were the most common. In
particular, C-X-C motif chemokine 10, a well-
established chemotactic cytokine, was strongly correlated
with MIR4435-2HG expression in these four cancer
types. Consequently, we concluded that IncRNAs, espe-
cially MIR4435-2HG, play key roles in linking glycolytic
pathways with other oncogenic signal pathways, includ-
ing EMT and immune regulation, in some cancer types.
Besides, all the high-resolution images of results were
showed as Additional file 13: Figure S8.
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Discussion

Glycolysis, a metabolic pathway, supplies energy, pro-
moting cancer malignancy. Although the evidence of a
crosstalk between glycolysis and IncRNA regulation in
cancer progression is mounting [28, 29], a clinical link
connecting IncRNAs and glycolysis is not fully under-
stood. We conducted a pan-cancer scale analysis to
identify glycolysis-associated IncRNAs in 33 cancer
types. We determined that the prognoses of five cancer
types, BLCA, PAAD, LGG, MESO, and UVM, were sig-
nificantly correlated with glycolysis-associated IncRNA
signatures. Furthermore, we comprehensively analyzed
changes in gene mutations, molecular subtypes, TFs,
oncogenic signal pathways, and immune cell infiltration
in patients stratified by glycolysis-associated IncRNAs.
Finally, we identified five IncRNAs, namely MIR4435-
2HG, AC078846.1, AL157392.3, AP001273.1, and
RAD51-AS1, which exhibited significant correlations
with glycolysis across the five cancer types. In particular,
MIR4435-2HG was suggested to play a critical role in
connecting glycolysis, EMT, and immune cell infiltration
in the cancers.

For the glycolysis evaluation of each cancer patient, we
chose the ssGSEA-derived glycolysis score instead of the
direct correlations of glycolysis-associated genes because
of the large number of glycolysis-involved genes in this
methodology (200 gene candidates). Directly correlating
IncRNAs with these genes would generate hundreds of
correlation results and p values, making evaluating the
degree of association of each IncRNA with glycolysis ac-
tivation difficult. Therefore, an ssGSEA algorithm was
utilized to treat the 200 glycolysis-involved candidates as
a gene set to perform a GSEA for individual patients.
Through this method, we were able to compress the
genes into a single score for each patient and capture
the degree of glycolysis activation. We did not directly
use the target genes of IncRNAs due to the complexity
of the regulatory mechanisms of IncRNAs. The functions
of IncRNAs in post-transcriptional regulation include
the microRNA sponge, interaction with the chromatin
modulator, and direct targeting of downstream RNA. In
addition, only focusing on glycolysis-involved genes that
belong to IncRNA direct targets would risk our over-
looking other promising candidates. Furthermore, no
bioinformatics tools that can accurately predict IncRNA
target genes are yet available. Therefore, ssGSEA-derived
glycolysis scoring may be a suitable tool for identifying
glycolysis-associated IncRNAs.

Relationships between glycolysis and the immune resist-
ance of cancers have recently been reported. Tumor cells
utilize glucose and metabolically compete with T cells
through impairing mammalian target of rapamycin
(mTOR) activity and glycolytic activity in T cells, leading
to the overriding of the capability of T cell-mediated
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(See figure on previous page.)
Fig. 4 Immune-related signaling is enriched in glycolysis-associated long noncoding (Inc)RNA-stratified cluster 3 cancer patients. a Unsupervised
clustering of distinct immune cell infiltrations in glycolysis-stratified cluster 3 and cluster 1 cancer patients. b A boxplot demonstrating immune
checkpoints that were upregulated in cluster 3 (with an effect size of > 0.5 and p value of <0.001) compared with cluster 1 or cluster 2. ¢ Bar plot
demonstrating frequencies of immune checkpoints upregulated in cluster 3 cancer patients across the five cancer types. The y-axis indicates the
names of immune checkpoints, and the x-axis represents the number of cancer types
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Fig. 5 Characterization of glycolysis-related long noncoding (Inc)RNAs in five cancer types. a A heatmap demonstrating glycolysis-associated
IncRNAs in five cancer types. Colors in the heatmap indicate the degree of correlation between glycolysis scores and IncRNA expressions. b Word
cloud of the glycolysis-correlated IncRNAs. Number of cancer types is associated with the text size of the INcCRNA names, whereas the color of the
INcRNA indicates median correlation coefficients. ¢ Density curve showing correlation coefficients of genes (pink) and IncRNAs (yellow)
significantly associated with glycolysis scores. Distributions of genes and IncRNAs were compared using the Kolmogorov-Smirnov test. The x-axis
represents correlation coefficients with glycolysis scores between genes and IncRNAs, and the y-axis represents numbers of IncRNAs and genes. d
Pie chart demonstrating percentages of INcRNAs with positive or negative values in the relative concentration index (RCI). e A circular bar plot
indicating frequencies of transcription factors (TFs) negatively associated with glycolysis-related nuclear IncRNAs. f Bar plots demonstrating cellular
localizations of five IncRNAs significantly correlated with glycolysis scores across five cancer types. g A bar plot showing numbers of activated
and suppressed TFs in cluster 3 compared with cluster 1 in five cancer types. The x-axis represents the number of cancer types, and the y-axis
represents the number of TFs. h Functional annotation analyses of activated TFs involved in more than four cancer types in cluster 3 cancer
patients. The y-axis represents significant enriched pathways (with an FDR of <0.01), and the x-axis represents multiples of enrichment of
indicated signal pathways. i A boxplot indicating TFs that were upregulated in cluster 3 compared with cluster 1. The y-axis represents
transcriptional activity inferred by target gene expression levels by using analytic rank-based enrichment analyses, and the x-axis represents
different clusters classified by glycolysis-associated IncRNAs. j MYC activity in five cancer types. k Dot plots of INcCRNA-TF pairs that exhibit
negative correlations across five cancer types. The association between TF and IncRNA within each cancer type exhibits a correlation coefficient
of <= 0.3 and a p value of < 0.001. The pooled p value and correlation coefficient are indicated in each dot plot

cytotoxicity [30]. In addition, highly activated glucose me-
tabolism in cancer cells promotes lactate accumulation in
the TME [31]. This extracellularly accumulating lactate
blocks lactate export from T cells, leading to the gener-
ation of dysfunctional aerobic glycolysis, a crucial mechan-
ism for maintaining T cell effector function. In addition to
immune regulation, metabolic reprogramming (including
glycolysis) with highly invasive and drug resistance fea-
tures was reported to possess the ability to transform can-
cer cell phenotypes toward EMT [32]. The EMT process
has also identified to be linked to immune evasion by can-
cer cells [33, 34]. However, relationships among glycolysis,
EMT, and immune regulation in cancers are still not fully
understood. In our analyses, we determined that EMT and
inflammatory responses, including immune-suppressive
ligand expression, were enriched in cluster 3 cancer pa-
tients, as classified by glycolysis-associated IncRNAs.
These findings suggest that the TME of cluster 3 cancer
patients is surrounded with different types of immune
cells, and the upregulated immune-suppressive ligands
and EMT activation protect cancer cells from attack by
immune cells. Therefore, the “hot” immune microenviron-
ment in cluster 3 cancer patients implies that immune
checkpoint blockade therapy might be suitable.

In our genomic mutation analysis, we identified spe-
cific gene mutations that were associated with glycolysis-
associated IncRNA-stratified clusters in different
cancers. Some of these genes have been reported to be
involved in glucose metabolism. For example, in mice
bearing RB1 null lung cancer [35], upregulation of glu-
cose transporter (GLUT) 1 and two rate-limiting en-
zymes in glycolysis, hexokinase-2 (HK2) and pyruvate
kinase isozymes 2, was observed, suggesting that RB1
regulates glucose metabolism. In the present study, the
cluster with high glycolytic activity mainly exhibited RB1
mutation in BLCA. Although loss of RB1 may serve as a
poor prognosis predictor in BLCA [36], the relationship

between RB1 and glycolysis in BLCA remains unclear.
Additionally, in PAAD and UVM, we identified KRAS
and BAP1 mutations, respectively, as enriched in clusters
with high glycolytic activity. In PAAD, KRAS mutation
activates glycolytic signaling mainly through MEK acti-
vation and Myc-dependent transcription, resulting in the
upregulation of GLUTs and rate-limiting enzymes of
glycolysis, such as HK2, phosphofructokinase-1, and lac-
tate dehydrogenase A (LDHA) [37]. A multi-omics ana-
lysis integrating transcriptome, metabolite, and genomic
analysis revealed that UVM cells with BAP1 mutation
maintain their energy demand through oxidative phos-
phorylation and glycolytic pathway [38]. Additionally,
the distinct metabolic features of mutant BAP1 and
wild-type UVM further lead to different responses to
metabolic inhibitors. These findings indicate that KRAS
and BAP1 mutations respectively drive metabolic alter-
ations in PAAD and UVM. In gliomas, the cluster with
high glycolytic activity mainly belongs to IDH1 wild-type
cancer patients, as per our findings. A previous study re-
ported that glioma cells with IDH1 mutation produce 2-
hydroxyglutarate, which promotes HIF-la degradation,
accompanied by the downregulation of glycolysis-related
genes including SLC2A1, PDK1, LDHA, and SLCI6A3
[39]. By contrast, IDH1 wild-type gliomas exhibited an
activated glycolysis pathway. Taken together, our
IncRNA-stratified clusters not only exhibit different
glycolytic activities but also distinct genomic mutations
that have been reported to be involved in glycolysis sig-
naling. However, whether these genomic mutations
might be the drivers altering glycolysis-associated
IncRNA profiles requires further investigation.

In our TF analysis, we determined that activated
prominent TFs in highly glycolytic clusters across BLCA,
LGG, PAAD, and UVM were mainly involved in TGF-p
signaling and SMAD protein complex assembly. SMAD
proteins are downstream signal transducers of the TGF-
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Fig. 6 MIR4435-2HG links glycolysis and its related signal pathways including the epithelial-to-mesenchymal transition (EMT) and immune
regulation. a Cumulative distribution curve (CDF) of glycolysis-gene correlations with or without adjustment for MIR4453-2HG by using a first-
order partial correlation. Solid lines indicate CDFs of correlation coefficients between glycolysis scores and gene expressions without adjustment.
Dashed lines indicate first-order partial correlation-adjusted relations between glycolysis scores and gene expressions. These two distributions
were compared using the Kolmogorov-Smirnov test. The x-axis represents Pearson correlation coefficients between glycolysis scores and gene
expressions, and the y-axis represents cumulative probabilities. b A circular bar plot displaying MIR4435-2HG-associated signal pathways. Genes

significantly associated with MIR4435-2HG but independent of the methylation status and copy number alterations were identified using a
multivariate linear regression. Pathways enriched in MIR4435-2HG-associated genes are shown in the circular bar plot. The height of the bars
indicates the degree of enrichment. Only pathways with a false detection rate (FDR) of <0.01 are included in the plot. ¢ A volcano plot indicating
MIR4453-2HG-associated genes that were independent of copy number alterations and the DNA methylation status. The x-axis represents
multivariate linear regression-adjusted coefficients between MIR-4435-2HG and glycolysis scores. Gene candidates involved in immune-related
signal pathways are labeled with a black round line, and their names are indicated in the plots

B signaling pathway, which functions as an immune-
suppressive regulator in cancers. For instance, Smad3-
mediated TGF-B signaling was reported to suppress the
cytotoxic activity of NK cells by blocking the production
of CD16-mediated IFN-gamma [40]. Another SMAD
protein, SMAD4, has dual roles in regulating NK im-
munity in a context-specific manner [41]. In the initial
phase of tumor formation, SMAD4 has a mainly positive
effect in promoting the development and antitumor ac-
tivity of NK cells. However, at the late stage of cancer
development, NK cells are surrounded with TGF-f pro-
duced by tumor cells. In this condition, SMAD4 cooper-
ates with p-SMAD2 and p-SMAD3 to suppress NK cell-
mediated cytotoxicity. Our analyses revealed that the
group with high glycolytic activity demonstrated a
microenvironment with highly infiltrated NK cells. Fur-
thermore, coordinated upregulation of SMAD2, SMAD3,
and SMAD4 was also observed in highly glycolytic pa-
tients. Taken together, these results imply that highly
glycolytic tumor cells might impede NK-mediated im-
munity through SMAD signaling, and such tumor cells
might be vulnerable to SMAD4 inhibition. However, the
relationship between glycolysis-related IncRNAs and
SMAD complex regulatory mechanisms in tumor cells
needs to be further validated.

Among the glycolysis-associated IncRNAs we identi-
fied, some IncRNAs have been reported to be directly in-
volved in  glycolysis  signaling. For example,
plasmacytoma variant translocation 1, which exhibited
positive associations with glycolysis scores in six of
thirty-three cancer types in our findings, was suggested
to function as a microRNA sponge in suppressing miR-
497 expression, leading to the promotion of HK2 upreg-
ulation and osteosarcoma progression [42]. Nuclear fac-
tor (NF)-«B-interacting IncRNA (NKILA), which was
positively correlated with glycolytic activity in the five
cancer types, activates hypoxia-inducible factor la ex-
pression to promote the hypoxia-mediated Warburg ef-
fect on gliomas [43]. Some IncRNA candidates in our
findings might also be implicated in regulating glycolysis.
For instance, cytoskeleton regulator RNA was reported

to interact with Sam68, an RNA-binding protein that
possesses an oncogenic function in cancers [44]. Fur-
thermore, Sam68 can upregulate the expression of pyru-
vate kinase isozymes M2 (PKM2), a key enzyme for
glycolysis-dominated energy metabolism [45], through
facilitating the transport of PKM2 messenger (m)RNA
from the nucleus to cytoplasm [46]. MIR4435-2HG, an
IncRNA positively correlated with glycolysis in 20 cancer
types, enhances YAP expression for cancer progression
[47]. Furthermore, YAP is recognized as a TF and is re-
sponsible for upregulating the expression of glucose me-
tabolism enzymes such as HK2 and 6-phosphofructo-2-
kinase/fructose-2,6 biphosphatase 3 [48]. However, their
roles in the glycolysis process require further
investigation.

Among the five IncRNAs that were consistently corre-
lated with glycolysis scores across different cancers in
our findings, MIR4435-2HG was identified as being
highly associated with glycolysis and its correlated genes.
By performing a multivariate linear regression adjust-
ment, we also uncovered that immune and EMT-
involved genes are positively correlated with MIR4435-
HG expression. Several studies have demonstrated the
oncogenic roles of MIR4435-2HG in cancer processes.
MIR4435-2HG promotes gastric cancer cell migration
and proliferation through Wnt/B-catenin signaling [49].
The upregulation of MIR4435-2HG promotes oral squa-
mous carcinoma cell proliferation through inducing
TGEF-B1 upregulation [50]. Nevertheless, few studies
have indicated links among MIR4435-2HG, glycolysis,
and immune regulation in cancers. Our analyses suggest
that MIR4435-2HG participates in interrelations among
glycolysis, immune resistance, and EMT. The present
study has limitations. The lack of public available RNA
sequencing data limited us to validate the classification
effectiveness of our genome classifier which is predom-
inantly based on the glycolysis-associated IncRNAs or
the gene candidates. More clinical data of individuals
with other types of cancer or from large cohort studies
are required for validation. Several IncRNAs in our find-
ings have rarely been reported, especially those
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negatively correlated with glycolysis. These should be
further investigated.

Conclusions

We identified a subgroup of cancer patients stratified by
glycolysis-correlated IncRNA signatures with the poorest
prognosis, a highly infiltrative immune microenviron-
ment, and EMT activation and thus provide novel as-
pects for cancer therapy.
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