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Abstract

Background: Triple-negative breast cancer (TNBC) is a clinically aggressive disease with abundant variants that
cause homologous recombination repair deficiency (HRD). Whether TNBC patients with HRD are sensitive to
anthracycline, cyclophosphamide and taxane (ACT), and whether the combination of HRD and tumour immunity
can improve the recognition of ACT responders are still unknown.

Methods: Data from 83 TNBC patients in The Cancer Genome Atlas (TCGA) was used as a discovery cohort to
analyse the association between HRD and ACT chemotherapy benefits. The combined effects of HRD and immune
activation on ACT chemotherapy were explored at both the genome and the transcriptome levels. Independent
cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression
Omnibus (GEO) were adopted to validate our findings.
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Results: HRD was associated with a longer ACT chemotherapy failure-free interval (FFI) with a hazard ratio of 0.16
(P = 0.004) and improved patient prognosis (P = 0.0063). By analysing both HRD status and ACT response, we
identified patients with a distinct TNBC subtype (ACT-S&HR-P) that showed higher tumour lymphocyte infiltration,
IFN-y activity and NK cell levels. Patients with ACT-S&HR-P had significantly elevated immune inhibitor levels and
presented immune activation associated with the increased activities of both innate immune cells and adaptive
immune cells, which suggested treatment with immune checkpoint blockade as an option for this subtype. Our
analysis revealed that the combination of HRD and immune activation enhanced the efficiency of identifying
responders to ACT chemotherapy (AUC = 091, P = 1.06e—04) and synergistically contributed to the clinical benefits
of TNBC patients. A transcriptional HRD signature of ACT response-related prognostic factors was identified and
independently validated to be significantly associated with improved survival in the GEO cohort (P = 0.0038) and

the METABRIC dataset (P < 0.0001).

Conclusions: These findings highlight that HR deficiency prolongs FFI and predicts intensified responses in TNBC
patients by combining HRD and immune activation, which provides a molecular basis for identifying ACT

responders.

Keywords: Triple-negative breast cancer, ACT chemotherapy, Homologous recombination repair deficiency, Failure-

free interval, Immune checkpoint

Background

Triple-negative breast cancer (TNBC) characterized by
absent or minimal expression of oestrogen receptors
(ER), progesterone receptors (PR) and human epidermal
growth factor receptor 2 (HER2) is a highly heteroge-
neous and aggressive disease and has the worst progno-
sis among the different subtypes of breast cancer [1, 2].
Among the chemotherapy regimens used for TNBC, se-
quential anthracycline (A) and cyclophosphamide (C)
followed by taxane (T) (ACT) are some of the preferred
regimens in international guidelines [3, 4]. However, ap-
proximately 30-40% of patients with residual disease
(RD) after surgery treated with ACT-based therapy will
develop metastatic disease and death [5].

The detailed molecular characterization of refractory
tumours is a prerequisite to understanding therapy re-
sistance and developing reasonable treatment strategies.
Homologous recombination repair (HRR) is a high-
fidelity repair mechanism specifically for DNA double-
strand breaks (DSBs) [6]. BRCA1/2 are key components
in the HR-mediated DNA DSB repair mechanism, and
mutations in BRCA1/2 are typical molecular alterations
that lead to homologous recombination repair deficiency
(HRD) and sensitivity to DNA damage agents [7, 8]. In
vitro and preclinical studies have shown that tumours
with HR deficiency are sensitive to platinum-containing
and/or DNA damage mutagens, which significantly in-
creases the patient response rate and prolongs survival
[9, 10]. However, whether HR deficiency could improve
the response to DNA-damaging or repair-inhibiting
therapies such as doxorubicin (which induces DNA
DSBs) and cyclophosphamide (an alkylating agent that
causes DNA crosslinks that lead to DSBs) [8, 10] in
TNBCs remains poorly characterized, although BRCA1/

2 germline mutations have been shown to promote the
pathological complete response (pCR) in early TNBC
patients who received ACT chemotherapy [11].

Among chemotherapy options in TNBC, combining
immunomodulatory therapy (such as atezolizumab) with
nab-paclitaxel and anthracycline-based chemotherapy is
potentially advantageous, significantly improving pCR
rates with an acceptable safety profile [12, 13]. Shibata
et al. showed that the DNA DSB repair pathway upregu-
lated the PD-L1 expression in cancer cells by activating
STATI and STATS3 signalling and the IRFI pathway [14].
Unrepaired DSBs regulate the tumour immune micro-
environment through a series of molecular and cellular
mechanisms, such as increasing genomic instability, acti-
vating immune pathway activation and facilitating PD-L1
expression on cancer cells, which might promote re-
sponsiveness to immune checkpoint inhibitors (ICIs)
[15, 16]. The clinical and translational data indicated
that low-dose chemotherapy may be utilized to stimulate
anticancer immune responses. For example, short-term
doxorubicin treatment may promote a more favourable
tumour microenvironment and increase the likelihood of
a response to PD-1 blockade in TNBC [17]. Additionally,
low-dose cyclophosphamide induced antitumour T cell
responses in metastatic colorectal cancer [18]. These
studies indicated that it is necessary to consider the
mechanism of the tumour immune microenvironment
to characterize the effect of HRD on the ACT chemo-
therapy response.

Here, we performed an integrated genome analysis of
TNBC patients who received ACT treatment after
tumour resection, specifically focusing on HRD and the
immune microenvironment and their combined effect
on the treatment response and clinical outcomes. A
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transcriptional HRD signature as a prognostic factor re-
lated to ACT chemotherapy was identified and inde-
pendently validated to be significantly associated with
improved survival in the GEO cohorts and the METAB-
RIC dataset. Our goal is to evaluate the combination of
HRD and immune activation as a potentially stronger
tool to predict which TNBC patients might achieve a
valuable response to ACT-based preoperative
chemotherapy.

Methods

Sample collection and datasets

Discovery cohort

In this study, we downloaded whole-exome sequencing
(WES) data and gene expression profiles (RNA-Seq,
RSEM standardization) for breast cancer patients in The
Cancer Genome Atlas (TCGA) from cBioPortal [19].
Additionally, the patient survival and clinical phenotype
(including age, PAM50 subtype and AJCC tumour stage)
data were obtained. The sampling time points of patients
and medication information related to the anticancer
drugs used (including start/end time points of treat-
ment) were obtained from the Genomic Data Commons
Data Portal (GDC Data Portal). We reviewed the drug
names and manually standardized them through
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DrugBank [20]. According to the dates given for sam-
pling and first treatment, we obtained a clear cohort of
primary breast cancer patients who received ACT treat-
ments after tumour resection (Fig. 1). After determining
the immunohistochemistry (IHC) status of ER, PR and
HER2 and selecting patients for whom exome sequen-
cing data were available, we established a final cohort of
83 TNBC patients (Table 1). Patients who were sensitive
to ACT treatment were defined as having complete re-
sponses to ACT or a failure-free interval (FFI) above the
median. Patients with disease progression or no im-
provement after ACT treatment ended (progressive dis-
ease/stable disease), or an FFI below the median were
defined as resistant to ACT (Table 1).

Validation cohorts

We downloaded data from GEO (GSE25055, GSE25065
and GSE41998), including expression profile, ACT re-
sponse and clinical phenotype, for validation cohorts of
TNBC patients who received neoadjuvant ACT therapy
after sample procurement [21, 22]. A cohort of 299
TNBC patients who received ACT chemotherapy after
tissue sample collection was obtained from METABRIC
[23]. In addition, two cohorts of TNBC patients
(Hess2006, neoadjuvant therapy; Chin2006, adjuvant

TCGA, Pan-Cancer Atlas
Breast cancer (1084 cases)

Sample procurement
started days

started days

339 cases were excluded:
304: Non-drug treatment information

26: Unclear therapy started days
Drugs treatment 9:

Chemotherapy precedes
tumor resections

Sample procurement prior to chemotherapy
(745 samples)

223 cases were excluded:
Other drugs treatment

y

Anthracycline/Cyclophosphamide/Taxane
threapy (522 samples)

IHC TNBC Status
(ER-, PR-, HER2-)

NGS profiles (Exomeseq,RNAseq,

and DNA methylation)

TNBC (83 samples)

Fig. 1 Sampling procedure for TNBC patients prior to ACT chemotherapy
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Table 1 Patient and tumour characteristics of TNBC

Baseline characteristics (n = 83) N (% or range)

Age (mean) 52 (29-78)
AJCC stage

Stage |, stage 1A 18 (21.7)

Stage IIA, stage 1IB 52 (62.7)

Stage llIA, stage lIB, stage IlIC 12 (14.5)
PAM50 subtype

Basal 64 (80.7)

Her2 5 (6.0)

LumB 1(1.2)
HRD status

HR deficiency 48 (57.8)

HR proficiency 35(422)
BRCA1/2 mutation

BRCA1 6 (7.2)

BRCA2 5(6.0)
BRCAT1 promoter methylation 7(7.2)
ACT chemotherapy response

Complete response 21 (25.3)

Partial response 2024

Progressive disease 102

- 59 (71.1)
ACT response status

Sensitive 39 (47.0)

Resistant 44 (53.0)

therapies) who were treated with ACT after sample pro-
curement were acquired from UCSC Xena [24, 25].
Hess2006 cohort patients undergoing diagnostic biopsy
were prior to ACT neoadjuvant therapy. Information on
all TNBC patients used in this study is provided in Add-
itional file 1: Table S1.

HRD score, mutational signature and HRDetect score

The HRD score was calculated based on the number of
specific lesions in the genome, including loss-of-
heterozygosity (LOH), large-scale transitions (LST) and
the number of telomeric allelic imbalances (ntAlI). Fol-
lowing Thorsson et al.’s research on TCGA data [26], we
extracted the HRD scores of TNBC patients. Somatic
point mutational signatures were determined with the
deconstructSigs R package [27] by using the COSMIC
signatures as a mutational-process matrix. The WES-
based HRDetect scores were calculated using the lasso
logistic model by fitting multiple predictors related to
HRD, including the HRD score, the contribution of
major mutational signatures in breast cancers (such as
signature 1, signature 3, signature 6 and signature 20)
and the insertion/deletion ratio [28]. The weights of the
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whole exome-specific model were trained on 560 artifi-
cial whole exomes [29].

BRCA1 promoter methylation analysis

We acquired DNA methylation data (Illumina Human
Methylation 450) from the UCSC Xena database. The
transcription start site (TSS) information of the human
reference genome (GRCh38) was obtained from
Ensembl. The promoter region was defined as the 1500
bp upstream and 500 bp downstream of the TSS. We
identified a robust probe (cgl3782816) for the BRCAI
gene located in the promoter region through the gene
symbol annotation information. BRCAI promoter
methylation (epigenetic silencing) was defined as a
cg13782816 methylation level exceeding 0.9.

Immune microenvironment mechanism of TNBC patients

The R package CIBERSORT [30] was used to calculate
the level of immune cell infiltration in TNBC patients.
The IFEN-y score of the TNBC patients was calculated
using the Tumor Immune Dysfunction and Exclusion
(TIDE) online analysis tool [31]. The immune molecular
and cellular characteristics of TCGA BRCA patients
were obtained from a previous study [26], including
tumour lymphocyte infiltration (TLI) score, regulatory
macrophages (Mregs), TCR/BCR Shannon, TCR/BCR
richness and TGF-f} response and neoantigens. Tumour
mutation burden (TMB) was defined as the total number
of nonsynonymous single nucleotide and indel variants.

Gene set enrichment analysis and pathway activity
calculation

We downloaded all the pathways of Collection 2 (C2)
and their included gene sets from MSigDB (v7.2) [32].
Patients with the ACT-S&HR-P subtype served as the
case group, other patients served as the control group
and the R package DESeq2 was used for differential ex-
pression analysis. Gene set enrichment analysis (GSEA)
was performed using the R package clusterProfiler. We
acquired the gene sets of both immune cell types and
core biological pathways from previous studies [33, 34]
and calculated the activity of these pathways/immune
cells utilizing the R package GSVA. We obtained sets of
immunostimulators and immune inhibitors based on
known studies [35, 36] and explored the differences in
the expression of these genes between patients with
ACT-S&HR-P and other TNBCs.

Immune score of TNBC patients

Two different methods were used to calculate the im-
mune score (IS) of each TNBC patient based on the
gene expression levels. (1) Due to the significantly higher
activities of immune response-related pathways (includ-
ing interferon and immune checkpoint blockade-related
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pathways, as well as CD8 effector T cells) in the ACT-
S&HR-P subtype, we calculated the IS according to the
sum of the activities of these pathways (Additional file 1:
Table S2). (2). The IS was also calculated using the aver-
age expression of prognostic immune markers in breast
cancer [37].

Identification of the HRD expression signature and
computation of the HRD-related prognostic score
After grouping TNBC samples (HR deficiency and HR
proficiency) according to HRD status and performing
differential expression analysis using the R package
DESeq2, we identified differentially expressed genes
(DEGs) using FDR < 0.05 and fold change > 2 or < 1/2
as the threshold. Univariate Cox regression analysis was
performed in the FFI of TNBC patients based on the ex-
pression levels of all DEGs. Finally, 15 HRD-related
prognostic factors (HRD expression signature) were de-
termined after removing redundant factors using lasso
logistic regression. Among those signature genes, 4 were
strongly overexpressed (FDR < 0.05, fold change > 2),
and 11 were downregulated (FDR < 0.05, fold change <
1/2) in HR-deficient compared to HR-proficient cases.
Considering the transcription levels of the HRD ex-
pression signature and the hazard ratio calculated by
Cox regression analysis, the prognostic score (PS) of up-
regulated factors (all hazard ratio < 1, protective factor)
and downregulated factors (all hazard ratio > 1, risk fac-
tor) were computed as follows:

" Explj

PSi = ZHR,

j=1

where HR; represents the hazard ratio of upregulated
(or downregulated) factor j in the Cox model. Exp;; rep-
resents the expression levels (log-transformed) of upreg-
ulated (or downregulated) factor j in sample i. We
calculated the HRD-related prognostic score (HRDPS) of
patients based on the PS of both upregulated and down-
regulated factors as follows:

HRDPS,’ = PSi,up - Psi,down

where PS; up represents the prognostic score of upreg-
ulated factors in sample i, and PS; 4own represents the
prognostic score of downregulated factors in sample i.

Statistical analyses

R Project (version 4.02) for statistical computing was
used in this study. The nonparametric Wilcoxon rank-
sum test was used to explore the statistical significance
between discrete variables (such as HRD status and
ACT response status) and continuous indicators (such
as immune cell infiltration and pathway activities). The
nonparametric Kruskal-Wallis test was used for
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comparisons among multiple groups, with Benjamini
and Hochberg false discovery rate (FDR) correction. For
some comparisons (activated NK cells, MO macrophages
and activated mast cells), we additionally performed a
combinatorial method that Wilcoxon’s rank-sum test
with continuity correction combined 10,000 iterations.
Fisher’s exact test was used to examine the relationships
between HRD status and HRR-related gene mutations,
BRCAI promoter methylation and the effect on the re-
sponse to ACT chemotherapy. Clinical outcomes and
FFI were compared using the log-rank test. Kaplan-
Meier graphs were plotted using standard methodolo-
gies. A Cox proportional hazards model was used to cal-
culate the hazard ratios and corresponding 95%
confidence intervals (Cls) with adjustments for age,
tumour stage and disease stage. Statistical significance
was set at two-tailed P < 0.05.

Results

Genomic alterations and homologous recombination
repair defects were widespread in TNBC patients

We acquired data for 83 TNBC patients who underwent
ACT chemotherapy after tissue sample collection based
on the dates given for sampling and first treatment (Fig.
1). Consistent with a previous study [38], most TNBC
patients belonged to the basal subtype (88%; Fig. 2A). As
expected, TNBC patients carrying mutations in 7P53
(84%), PTEN (11%) and BRCA1/2 (8% and 7%, respect-
ively) were relatively frequent among breast cancer (BC)
patients in the PanCancer Atlas [39] (Fig. 2A, Additional
file 1: Fig. S1A). In contrast, the oncogene PIK3CA
(11%) was less prone to the mutation in TNBCs than all
BC patients.

Biomarkers for homologous recombination repair defi-
ciency in cancers have attracted great interest from re-
searchers [8, 40]. HR deficiency was defined as either a
deleterious tumour BRCAI/2 (tBRCA) mutation or a
predefined HRD score > 42 [8], which was determined
in 57.8% (48/83) of TNBC patients (Fig. 2A, Table 1).
Our results showed that most TNBC patients with
BRCA1/2 mutations presented HRD scores"" (> 42)
and dominant mutational signature 3 (SBS3) activity (>
0.3) (both 8/11; Fig. 2B). Indeed, the patients with HR
deficiency showed significantly higher SBS3 exposure
than patients with HR proficiency (P = 4.3e-04, Wil-
coxon rank-sum test; Fig. 2C). In addition to BRCA1/2,
several important components of the HRR pathway,
such as RADS54 family members (including RAD54B and
RADS54L), DNA polymerase members (including POLD]1,
POLH and POLQ) and PARPI1, PALB2 and TP53BP1, oc-
curred mainly in the HR deficient samples (29/48, P =
3.04e-04, Fisher’s exact test; Fig. 2D, Additional file 1:
Fig. S1B). Consistent with previous studies, we also
found that HR-deficient patients showed a higher
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Fig. 2 Genome alterations and HRDs in TNBC patients. A Mutation profile of high-frequency mutation genes in patients (top 30). B Distribution of
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proportion of BRCAI promoter methylation and HRDe-
tect score™&" (16/48, P = 0.018, Fisher’s exact test; Figs.
2A, E) [28, 41]. These results indicated that HRD could
be characterized by mutations in HRR-related genes,
SBS3 exposure and BRCAI promoter hypermethylation.

Homologous recombination repair deficiency correlates
with ACT chemotherapy benefits

Accumulated evidence has shown that HRD is associated
with a better prognosis for patients with a variety of solid
tumours [42, 43]. Whether a better prognosis is related to
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HRD in TNBC patients who received ACT chemotherapy
has not been well characterized. Our results revealed that
compared with patients with HR proficiency, patients with
HR deficiency showed significantly better overall survival
(OS; P = 0.0063, log-rank test; Fig. 3A) and disease-
specific survival (DSS; P = 0.023, log-rank test; Additional
file 1: Fig. S2A) after treatment with ACT. Specifically, the
5-year OS rate for HR-deficient patients was 98%, while
that for HR-proficient patients, it was only 61% (Fig. 3A).
Multivariate Cox regression analysis showed that HR

deficiency was an independent protective factor associated
with prolonged patient OS (P = 0.002, log-rank test; Add-
itional file 1: Fig. S2B) and DSS (P = 0.014, log-rank test;
Additional file 1: Fig. S2C) in TNBC after adjusting for
clinical factors including age, AJCC stage and TNM stage.

Furthermore, to explore whether HR deficiency can in-
deed benefit TNBC patients’ response to ACT treatment,
we determined the ACT chemotherapy failure-free inter-
val (FFI) of patients based on the period from the end of
treatment to tumour progression/recurrence or death
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expression of CTLA-4 (F) were diverse. P-value between the two (among multiple) groups was calculated by the Wilcoxon rank-sum (Kruskal-
Wallis) test, the same below. ACT-S&HR-D: sensitive to ACT and HR deficiency (26 cases); ACT-S&HR-P: sensitive to ACT and HR proficiency (13
cases); ACT-R&HR-D: resistant to ACT and HR deficiency (22 cases); and ACT-R&HR-P: resistant to ACT and HR proficiency (22 cases). G-1 The
elevated expression of known cancer immunotherapy biomarkers, including CTLA-4 (G), PD-1
and HR proficiency (ACT-S&HR-P). The others mean all samples except ACT-S&HR-P

(H) and PD-LT (1), were correlated with ACT-sensitive
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(Fig. 3B). Our results showed that HR deficiency was cor-
related with durable response to ACT chemotherapy (P =
0.046, log-rank test; Fig. 3C). The 5-year FFI rate for HR-
deficient patients was 75%, while that for HR proficiency,
it was only 52%. Cox regression analysis showed that HR
deficiency was a significant protective factor for FFI in
TNBC patients with a hazard ratio of 0.16 (95% CI 0.044—
0.55, P = 0.004; Fig. 3D), which improved the response
interval to ACT chemotherapy. In addition, we found that
HR-deficient patients tended to be more sensitive to ACT
chemotherapy (54.2% for sensitive, 37.1% for resistant),
compared with HR-proficient patients (37.1% for sensitive,
62.9% for resistant; P = 0.074, Fisher’s exact test; Fig. 3E).

Revealing the diversity of the immune microenvironment
related to ACT responses utilizing HRD status
Unrepaired DNA damage, especially HRD, modulates
the tumour immune microenvironment through a range
of molecular and cellular mechanisms [15, 16]. Low-
dose doxorubicin and cyclophosphamide chemotherapy
may stimulate anticancer immune responses and pro-
mote a more favourable tumour microenvironment [17,
18]. We speculated that the impact of HRD on the im-
mune microenvironment was related to the ACT re-
sponse in TNBC patients. As expected, we found that
the effect of HRD on immune cell infiltration showed
significant differences in distinct ACT response groups
(Fig. 4, Additional file 1: Fig. S3). For example, in the
ACT-sensitive (ACT-S) group, NK cells showed higher
infiltration in HR-proficient (HR-P) samples (P = 0.0079,
Wilcoxon rank-sum test, same below; Fig. 4A). In con-
trast, MO macrophages and mast cells presented higher
infiltration levels in HR-deficient (HR-D) samples (P-
values were 0.02 and 0.012, respectively; Additional file
1: Fig. S3AB). Interestingly, differences in these immune
cells were not observed in the ACT-resistant (ACT-R)
group (Fig. 4A, Additional file 1: Fig. S3AB). Addition-
ally, in the ACT-sensitive group, we found that regula-
tory macrophages (Mregs) were significantly activated in
HR-proficient patients (P = 0.0087, Wilcoxon rank-sum
test; Fig. 4B). These patients showed T cell/B cell recep-
tor (TCR/BCR) repertoire diversity (P-values of 0.041
and 0.019, respectively; Fig. 4C, Additional file 1: Fig.
S3C) and TCR/BCR richness (P-values of 0.036 and
0.018, respectively; Additional file 1: Fig. S3DE). Diversi-
fied TCR/BCR receptors are the basic attributes of an ef-
fective immune system, allowing T/B cells to target
multiple types of endogenous or exogenous antigens [44,
45]. However, we did not find corresponding results in
the ACT-resistant patient group (Fig. 4C, Additional file
1: Fig. S3CDE).

Studies have suggested that neoantigens presentation
in tumours promotes the release of IFN-y from tumour-
infiltrating lymphocytes (TILs), and the released IFN-y
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upregulates PD-L1 expression in immune cells and tu-
mours [46, 47]. We found that in the ACT-sensitive
group, HR-proficient samples showed higher TIL infil-
tration (P = 0.0071, Wilcoxon rank-sum test, same
below) and IFN-y activity (P = 0.012) compared to HR-
deficient samples (Fig. 4D, E). Among HR-proficient pa-
tients, those sensitive to ACT also showed higher TIL
scores (P = 0.079, Wilcoxon rank-sum test, same below)
and stronger IFN-y activity (P = 0.009) than ACT-
resistant patients (Fig. 4D, E). The patients with ACT-
S&HR-P (sensitive to ACT and HR proficiency) were as-
sociated with higher IFN-y activity (P = 0.011, Wilcoxon
rank-sum test; Additional file 1: Fig. S4A) and lower
TGF beta response (Additional file 1: Fig. S4B), implying
an intense immune response in this subtype. Further-
more, for the known cancer immunotherapy biomarkers,
we found that their expression levels were correlated
with ACT response and HRD status (Fig. 4F, Additional
file 1: Fig. S4CD). For example, significantly higher ex-
pression levels of CTLA-4, PD-1 and PD-L1 were found
in ACT-S&HR-P patients (P < 0.05, Wilcoxon rank-sum
test; Fig. 4G-I). In particular, patients with HR defi-
ciency showed higher TMB (P = 0.0031, Wilcoxon rank-
sum test; Additional file 1: Fig. S4E) and neoantigen
levels (P = 0.0018, Wilcoxon rank-sum test; Additional
file 1: Fig. S4F), which may be related to the fact that
HRD exacerbates DNA DSBs, thereby promoting gen-
ome instability and causing the release of molecular an-
tigens [48].

Immune checkpoint blockade as an optional treatment
for patients with ACT-S&HR-P subtype

The clinical and translational data indicated that short-
term doxorubicin treatment may increase the likelihood
of a response to PD-1 blockade in TNBC [17]. Consider-
ing the results of our study, we postulated that ACT-
S&HR-P patients may benefit from immune checkpoint
blockade (ICB) therapy. To test this postulate, we per-
formed GSEA on the C2 pathways from MSigDB (v7.2)
(the “Methods” section). We found that the genes that
were upregulated in ACT-S&HR-P patients were
enriched in multiple immune response-related pathways,
such as interferon-gamma signalling (NES = 2.53, FDR <
0.001; Fig. 5A, Additional file 1: Fig. S6A), interferon sig-
nalling (NES = 2.30, FDR < 0.001; Additional file 1: Fig.
S5A) and type II interferon signalling IFN-y (NES =
2.36, FDR < 0.001; Additional file 1: Fig. S5B). In
addition, ICB-related pathways, including cancer im-
munotherapy by PD-L blockade (NES = 2.41, FDR <
0.001), the CTLA-4 pathway (NES = 2.55, FDR < 0.001)
and CD28 family costimulation (NES = 2.45, FDR <
0.001), were related to the upregulated genes in this sub-
type (Fig. 5B, Additional file 1: Fig. S5CD). In particular,
natural killer cell-mediated cytotoxicity (NES = 2.05,
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FDR < 0.001; Fig. 5C) and antigen processing and pres-
entation (NES = 2.63, FDR < 0.001; Additional file 1: Fig.
S5E) were also enriched to the upregulated genes in this
subtype.

Consistent results were found using pathway activity.
For example, cancer immunotherapy by CTLA-4/PD-1
blockade was activated in ACT-S&HR-P patients (mean

differences >0, P < 0.05, Wilcoxon rank-sum test, the
same below; Fig. 5D, Additional file 1: Fig. S6B). Simi-
larly, the immune response-related pathways mentioned
above also showed significant activation in this subtype,
including interferon-gamma signalling (mean difference
= 0.29, P = 0.0078), NK cell pathway (mean difference =
0.31, P = 0.011) and antigen processing and presentation
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(mean difference = 0.28, P = 0.0035) (Fig. 5D, Additional
file 1: Fig. S6B). The JAK-STAT signalling pathway plays
critical roles in the coordination of the immune system, es-
pecially for cytokine receptors, and it can regulate the
polarization of helper T cells [14]. Our results showed that
the genes upregulated in ACT-S&HR-P patients were
enriched to the JAK-STAT signalling pathway (NES = 2.58,
EDR < 0.001; Additional file 1: Fig. S5F). Additionally, the
IL2-STAT4 pathway (NES = 2.62, FDR < 0.001) and /L2-
STATS pathway (NES = 2.25, FDR < 0.001) showed correla-
tions with the upregulated genes in this subtype (Additional
file 1: Fig. S6A). Additionally, the pathways related to the
inflammatory response, including the IL2-STAT4/5 path-
ways presented higher activities in this subtype (Fig. 5D,
Additional file 1: Fig. S6B). These results suggested that
ACT-S&HR-P patients exhibit surprisingly elevated im-
mune activities by activating the immune response
pathways.

By analysing the types of immune cells [33], we found that
among HR-proficient patients, both innate immune cells
(such as activated DCs [aDCs], mast cells, macrophages and
natural killer (T) cells [NKs/MKTs]) and adaptive immune
cells (such as T helper 1 [Thl], CD8+ T central memory
[Tcm], CD8+ T effector memory [Tem] and CD4+ Tem
cells) were activated only in the ACT-sensitive group (P <
0.05, Wilcoxon rank-sum test, the same below; Fig. 5E, Add-
itional file 1: Fig. S6CD). Similarly, the core biological path-
ways, including immune checkpoint (P = 0.027), CD8 T
effector (P = 0.011) and antigen processing machinery path-
ways (P = 0.027), were also activated in ACT-S&HR-P pa-
tients (Additional file 1: Fig. S6EF). Additionally, analysing
both immune cell infiltration and differential expression pro-
filing revealed that the ACT-S&HR-P subtype was enriched
for both immune-activated cells and immunostimulators.
For instance, immunostimulatory cells, such as M1 macro-
phages, NK cells and dendritic cells, showed significantly
higher activity in ACT-S&HR-P patients (Fig. 5F). However,
the number of immune-suppressive cells was not elevated in
this subtype (Fig. 5G). Expression profiling demonstrated
that immunostimulators such as CD40, CD86 and ICOS
were significantly overexpressed in this subtype (Fig. 5H).
The mechanisms by which ACT-S&HR-P patients show a
stronger immune response likely involve the recruitment of
immune-activated cells. In particular, our results revealed
that immune inhibitors, especially /DO, were significantly
elevated in ACT-S&HR-P patients (Fig. 5I). This provides a
valuable reference for additional reasonable immune check-
point blockade therapeutics for TNBC patients with the
ACT-S&HR-P subtype.

Enhanced efficacy of identifying ACT responders by
combining HRD and immune activation

The above findings implied that HRD and immune cell
activity might synergistically affect the ACT response;
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thus, we wondered whether the combination of HRD
and immune activation could improve the ACT chemo-
therapy response. We computed the immune score (IS)
of patients based on the immune response pathways (the
“Methods” section) and annotated the patients with the
highest 25% IS as being positive for IS (IS+). Our study
showed that combined positivity (i.e. positivity for HRD,
IS, or both) was significantly associated with clinical
benefit (P = 1.9e-04, log-rank test; Fig. 6A) with a haz-
ard ratio of 0.037 (95% CI 0.0048-0.29, P = 0.002, Add-
itional file 1: Fig. S7C) and prolonged DSS of patients (P
= 0.018, Additional file 1: Fig. S7AB). More importantly,
we found that the patients with combined positivity had
a longer ACT failure-free interval (P = 0.013, log-rank
test; Fig. 6B). After adjusting for clinical factors, the
combined positivity was found to be a significantly inde-
pendent prognostic factor (HR = 0.21, 95% CI 0.064—
0.67, P = 0.009; Fig. 6C). The results were consistent
with the known prognostic immune markers of breast
cancer (Additional file 1: Table S3, Fig. S7D-F). Incorp-
orating IS into Cox models fit with age, tumour stage,
and age and tumour stage improved the predictive ac-
curacy of FFI (P < 0.002, likelihood ratio test; Fig. 6D),
which highlights the importance of the combination of
HRD status and immune activities in ACT chemother-
apy. Additionally, we found that the prognostic efficacy
of combined status (AUC = 0.91) was better than that of
HRD status alone (AUC = 0.83) or clinical factors alone
(AUC = 0.61) (Fig. 6E). These results indicated the ne-
cessity of combining HRD status with tumour immunity,
which improves the efficacy of identifying ACT re-
sponders in TNBC.

To further validate those findings in an independent
dataset of TNBC cases, we developed an HRD expres-
sion signature that predicts ACT response (FFI) in
TCGA TNBC cohorts (the “Methods” section). We iden-
tified 15 genes that were associated with FFI, including 4
that had a better ACT response and 11 that had a worse
response in HR deficiency than in HR-proficient cases
(Fig. 7A, Additional file 1: Table S4). The HRD expres-
sion signature showed excellent performance in reflect-
ing the genomic HRD status applied to TNBC patients,
as demonstrated by a receiver operating characteristic
(ROC) curve with an AUC of 0.89 (Fig. 7B), which was
superior to other types of breast cancer samples, includ-
ing all BC patients (AUC = 0.81) and BC patients except
TNBC (AUC = 0.77).

The combined score contributes to the ACT response and
clinical benefit of TNBC patients

We demonstrated that the combination of the HRD-
related prognostic score (HRDPS) and IS was an effect-
ive way to predict TNBC patients who may achieve pCR
to ACT chemotherapy, showing better prognosis in
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independent validation sets (Additional file 2: Table S5)
[21, 22, 24]. Our results indicated that the patients with
combined positivity had longer distant relapse-free sur-
vival (DRFS; P = 3.8e-3, log-rank test; Fig. 7C). After
adjusting for clinical factors, combined negativity was a

significant independent risk prognostic factor in TNBC
patients with a hazard ratio of 6.4 (95% CI 2.38-17.1, P
< 0.001) compared to combined positivity (Additional
file 1: Fig. S8A). However, there was no statistical signifi-
cance when using HRDPS alone, although patients with
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HRD-positive had better DRES (P = 0.062, log-rank test;
Additional file 1: Fig. S8B). In addition, the patients with
combined positivity had higher pCR rates of ACT in two
independent validation sets (54.5% for Hess et al. TNBC,
44.4% for GSE1998 TNBC) compared with combined
negativity cases (20% for Hess et al. TNBC, 26.9% for
GSE1998 TNBC; Fig. 7D, E).

Furthermore, we analysed the impact of HRDPS, IS
and combined status on the prognosis of TNBC patients
who were treated with chemotherapy [23]. The results
showed that the combination of HRD status and tumour
immune activation showed a strong correlation with pa-
tient OS (P < 0.0001, log-rank test; Fig. 7F). The patients
with positivity for both factors showed the longest OS
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compared with those with other statuses (P < 0.0001
compared with both negative, P = 0.001 compared with
HRDPS-positive only and P = 0.012 compared with IS-
positive only, log-rank test; Fig. 7F). Multivariate Cox re-
gression showed that the patients who were negative for
both (HR = 2.3 95% CI 1.26-3.9, P = 0.005) and HRDP
S-positive only (HR = 2.3 95% CI 1.32-4.2, P = 0.004)
showed a significantly worse prognosis compared with
patients who were positive for both (Fig. 7G).

Similarly, we acquired consistent results in two add-
itional validation sets of TNBC patients who received
ACT intervention [22, 25]. For example, the patients
with positivity for both HRDPS and IS showed the lon-
gest DRFS (GSE25055; P = 0.007 compared with IS-
positive only; P = 0.041 compared with HRDPS-positive
only; P = 0.053 compared with both negative, log-rank
test; Additional file 1: Fig. S9A) and the best survival
outcomes for DSS (Chin et al.; P = 0.037 compared with
HRDPS-positive only; P = 0.049 compared with both
negative, log-rank test; Additional file 1: Fig. S9B). These
results demonstrated that the combination of HRD and
tumour immune activation can indeed contribute to the
ACT chemotherapy response and clinical outcomes of
TNBC patients.

Discussion

In this study, we developed an integrated strategy to pre-
dict the ACT chemotherapy response through the com-
bination of HR deficiency and immune activation in
TNBC patients. Our method integrated multiomics data
to ensure that we can not only characterize the HRD
phenotype of TNBC using different methods but also
analyse the effect on the ACT chemotherapy response in
combination with the immune microenvironment. The
presence of BRCA1/2 mutations or tumour genomic in-
stability (HRD score > 42) is surrogate markers of HR
deficiency [8, 10], and a positive immune score is a
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surrogate of interferon-primed immune checkpoints in
the tumour microenvironment [49]. The presence of one
or both tumour features was associated with longer FFI
(HR = 0.21, P = 0.009) and OS (HR = 0.037, P = 0.002)
in TNBC patients. A transcriptional HRD signature re-
lated to the ACT response was independently validated
to be significantly associated with improved survival in
the GEO cohort (P = 0.0038) and the METABRIC data-
set (P < 0.0001) and increased ACT pCR rates of TNBC
patients. These results are clinically relevant and suggest
that combining HRD status and tumour immunity may
aid in the selection of TNBC patients who would benefit
from ACT chemotherapy.

TNBC is a breast cancer subtype with fairly abundant
defects in DNA damage repair, especially HRD (approxi-
mately 67%) [8, 10], which encourages us to start from
the perspective of DNA DSBs and develop treatment
strategies that are sensitive to DNA damage inducers or
DNA synthesis inhibitors [9, 10]. Mutations in BRCA1/2
genes, especially germline variations, along with other
Fanconi anaemia (FA) pathway genes (such as NBN,
RADS54L, ATM), are prototypic molecular alterations
that confer HRD in breast cancer [8]. Unfortunately, we
cannot acquire information about germline BRCA1/2
variation from public data resources. The HRD score is
an algorithmic assessment of three measures of tumour
genomic instability, namely, loss of heterozygosity, telo-
meric allelic imbalance and large-scale state transitions,
which is a recognized indicator to characterize HRDs
[10, 40]. BRCAI promoter hypermethylation, as an in-
activator of epigenetic modifications, was associated with
a gene expression profile similar to that of inherited
BRCA 1 mutation-associated breast cancer [9, 41]. Muta-
tional signature 3 is a genomic feature associated with
failure of DNA DSB repair in breast cancer and is highly
related to BRCAI1/2 variation [41]. We identified HR-
deficient patients with BRCAI/2 mutations or HRD
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Fig. 8 The characteristics summary of TNBC patients with HRD and ACT response. TMB, tumour mutation burden; ICls, immune checkpoint
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scores > 42 and indeed found that HR deficiency was as-
sociated with higher SBS3 activity, HRR gene mutations
and BRCAI promoter hypermethylation.

In agreement with previous observations, we found
that HR deficiency was associated with better survival of
TNBCs [8]. In addition, we further determined the FFI
for TNBC patients who received ACT chemotherapy
based on the period from the end of treatment to
tumour progression/recurrence or death and found that
HR deficiency was related to the patient durable re-
sponse to ACT chemotherapy (P = 0.046). In cases of in-
complete therapy response information from public
databases, we explicitly classified TNBC patients as
ACT-sensitive or ACT-resistant according to FFI and
whether the tumour had progressed or complete re-
sponses after ACT treatment. This allowed us to further
characterize the correlation between HRD status and
ACT response. Considering the results of previous stud-
ies, the identification of TNBC patients who are sensitive
to ACT is limited if only HRD status was considered [8].
The combined analysis of HRD status and the immune
microenvironment provided us with an additional refer-
ence (Fig. 8), which made up for the limitations.
Through transcriptional HRD signature analysis, we in-
dicated that the HRD gene expression score was better
at prognosis when combined with the immune score
than their genetically determined HRD status. Our re-
sults demonstrated that the immunostimulatory cells
and immune inhibitors (such as PD-LI1, CTLA-4 and
IDOI) were significantly elevated in ACT-S&HR-P pa-
tients, providing additional rationale for the use of im-
mune checkpoint blockade as a therapeutic approach.

The relative proportions of infiltrating immune cells
were inferred based on gene expression profiles. How-
ever, mRNA only—based assessment of the immune infil-
trate meets with several limitations. The architectural
pattern and spatial distribution of TILs might be not
captured by tumour transcriptomes. In addition, the dif-
ferences of cellular RNA content may lead to estimation
biases. And the calculation method particularly depends
on the robustness of TIL marker genes [50, 51]. There-
fore, it is necessary to consider the combination of im-
munohistochemistry to assess the immune infiltrate in
future studies.

Conclusions

In summary, our findings highlighted that HR deficiency
could prolong ACT chemotherapy benefits (failure-free
interval) and predicted an intensified ACT response in
TNBC patients by combining HRD and immune activa-
tion. The combination synergistically contributes to the
clinical outcomes of TNBC patients and enhances the
efficacy of identifying ACT chemotherapy responders,
which resolves the issue that ACT chemotherapy-
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sensitive patients cannot be clearly identified using HRD
status alone. The combined status of HRD and immune
activation based on gene expression assay can be used as
a potential prognostic marker for TNBC patients, which
suggests that combining the two types of characteristics
has important application value in guiding the use of
ACT chemotherapy in TNBCs. This provides a molecu-
lar basis for accurately identifying ACT chemotherapy
responders and has prospective significance in clinical
trials.
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